Tag Archives: china bearing bearing

China Hot selling 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for CZPT Rogue 5 Lugs Axle Hub Assembly Kit No/ABS axle and wheels

Product Description

 

Item 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for Nissan Rogue 5 Lugs Axle Hub Assembly Kit No/ABS
Manufacturer JB Auto Parts
Brand JBG
OEM NO. 43202JG200  43202JG21A
43202EN11A  457127585R
43202JY30A
Ref. Number BR93571 512373 VKBA6998
Application Nissan Rogue 08-13

Welcome to J.B Auto Parts :

We are Professional manufacturer for wheel bearings and wheel hub bearings more than 10 years with OE quality grade. Our products range as follows

a. The DAC Series wheel bearings
b. The DU Series wheel bearings
c. The Second generation wheel Hub Units
d. The Third generation wheel Hub Units
 
We have passed the evaluation of ISO9001:2000 , TS16949 Quality management system certification
Why Choose J.B ?
OE Quality
All J.B wheel hub assemblies are made with precision using state-of-the-art technology and manufactured using a set of strict quality-control criteria.
Reliability
Our team upholds safety and reliability as the 2 most significant guidelines when manufacturing our products. Using high calibrating tools, we are CZPT to engineer our bearings with the utmost precision for long term functionality.
Cost Efficiency
Here at J.B we believe in providing our customers with quality products at an affordable price. Why waste time and money with an inferior product when you can take advantage of J.B cost -efficient bearings and seals?
 

After-sales Service: 50000 Km
Warranty: 2 Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P6
Certification: ISO9001, TS16949
Samples:
US$ 28/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

Are there differences between front and rear axle hubs in terms of design and function?

Yes, there are differences between front and rear axle hubs in terms of design and function. Here’s a detailed explanation of these differences:

1. Design:

The design of front and rear axle hubs can vary based on the specific requirements of each axle position.

Front Axle Hubs: Front axle hubs are typically more complex in design compared to rear axle hubs. This is because front axle hubs are often responsible for connecting the wheels to the steering system and accommodating the front-wheel drive components. Front axle hubs may have provisions for attaching CV (constant velocity) joints, which are necessary for transmitting power from the engine to the front wheels in front-wheel drive or all-wheel drive vehicles. The design of front axle hubs may also incorporate features for connecting the brake rotor, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs generally have a simpler design compared to front axle hubs. They are primarily responsible for connecting the wheels to the rear axle shafts and supporting the wheel bearings. Rear axle hubs may not require the same level of complexity as front axle hubs since they do not need to accommodate steering components or transmit power from the engine. However, rear axle hubs still play a critical role in supporting the weight of the vehicle, transmitting driving forces, and integrating with the brake system.

2. Function:

The function of front and rear axle hubs differs based on the specific demands placed on each axle position.

Front Axle Hubs: Front axle hubs have the following primary functions:

  • Connect the wheel to the steering system, allowing for controlled steering and maneuverability.
  • Support the wheel bearings to facilitate smooth wheel rotation and weight distribution.
  • Integrate with the front-wheel drive components, such as CV joints, to transmit power from the engine to the front wheels.
  • Provide a mounting point for the brake rotor or drum, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs have the following primary functions:

  • Connect the wheel to the rear axle shaft, facilitating power transmission and driving forces.
  • Support the wheel bearings to enable smooth wheel rotation and weight distribution.
  • Integrate with the brake system, providing a mounting point for the brake rotor or drum for braking performance.

3. Load Distribution:

Front and rear axle hubs also differ in terms of load distribution.

Front Axle Hubs: Front axle hubs bear the weight of the engine, transmission, and other front-end components. They also handle a significant portion of the vehicle’s braking forces during deceleration. As a result, front axle hubs need to be designed to handle higher loads and provide sufficient strength and durability.

Rear Axle Hubs: Rear axle hubs primarily bear the weight of the vehicle’s rear end and support the differential and rear axle shafts. The braking forces on the rear axle hubs are typically lower compared to the front axle hubs. However, they still need to be robust enough to handle the forces generated during acceleration, deceleration, and cornering.

In summary, there are differences between front and rear axle hubs in terms of design and function. Front axle hubs are typically more complex and accommodate steering components and front-wheel drive systems, while rear axle hubs have a simpler design focused on supporting the rear axle and integrating with the brake system. Understanding these differences is important for proper maintenance and repair of the axle hubs in a vehicle.

axle hub

Are there specific tools required for DIY axle hub replacement, and where can I find them?

When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:

  • Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
  • Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
  • Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
  • Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
  • Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
  • Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
  • Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.

To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.

It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.

In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.

axle hub

Are there any recalls or common issues associated with specific axle hub models?

Recalls and common issues can occur with specific axle hub models due to manufacturing defects, design flaws, or other factors. Here’s a detailed explanation:

It’s important to note that specific recalls and common issues can vary depending on the make, model, and year of the vehicle, as well as the specific axle hub manufacturer. Manufacturers and regulatory bodies such as the National Highway Traffic Safety Administration (NHTSA) monitor and address safety concerns related to axle hubs through recalls and investigations.

Recalls are typically initiated by the vehicle manufacturer or the axle hub manufacturer in response to identified safety defects or non-compliance with safety standards. Recalls aim to address the issues and rectify any potential safety risks associated with the axle hub models. They may involve inspections, repairs, or replacements of the affected components.

To determine if there are any recalls or common issues associated with specific axle hub models, it is recommended to check the following sources:

  1. Manufacturer’s Website: Visit the official website of the vehicle manufacturer or the axle hub manufacturer. They often provide information on recalls, technical service bulletins (TSBs), and common issues related to their products. Look for any relevant information specific to the axle hub models in question.
  2. NHTSA Website: The NHTSA maintains a comprehensive database of recalls and investigations related to vehicle components, including axle hubs. Their website allows users to search for recalls and investigations by specific make, model, and component. You can use their search tool to check if there are any recalls or investigations associated with the axle hub models of interest.
  3. Owner Forums and Online Communities: Online forums and communities dedicated to specific vehicle makes and models can be a valuable source of information. Owners often share their experiences, including common issues they have encountered with axle hub models. It’s important to consider multiple sources and exercise caution when relying on anecdotal information.
  4. Service Centers and Mechanics: Local service centers and mechanics who specialize in the specific vehicle make or have experience with the axle hub models in question may be aware of any recalls or common issues. They can provide insights based on their firsthand knowledge and experience.

By consulting these sources, you can gather information about any recalls or common issues associated with specific axle hub models. If any recalls or safety concerns are identified, it is recommended to contact the vehicle manufacturer or a certified dealership to inquire about the necessary actions, such as inspections or repairs, to address the issues.

In summary, recalls and common issues can occur with specific axle hub models. Checking the manufacturer’s website, the NHTSA website, owner forums, and consulting with service centers and mechanics can provide valuable information regarding any recalls or common issues associated with the axle hub models of interest. It’s important to stay informed and take appropriate actions to address any identified safety concerns.

China Hot selling 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for CZPT Rogue 5 Lugs Axle Hub Assembly Kit No/ABS   axle and wheelsChina Hot selling 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for CZPT Rogue 5 Lugs Axle Hub Assembly Kit No/ABS   axle and wheels
editor by CX 2023-12-06

China best 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for CZPT Rogue 5 Lugs Axle Hub Assembly Kit No/ABS axle shaft

Product Description

 

Item 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for Nissan Rogue 5 Lugs Axle Hub Assembly Kit No/ABS
Manufacturer JB Auto Parts
Brand JBG
OEM NO. 43202JG200  43202JG21A
43202EN11A  457127585R
43202JY30A
Ref. Number BR93571 512373 VKBA6998
Application Nissan Rogue 08-13

Welcome to J.B Auto Parts :

We are Professional manufacturer for wheel bearings and wheel hub bearings more than 10 years with OE quality grade. Our products range as follows

a. The DAC Series wheel bearings
b. The DU Series wheel bearings
c. The Second generation wheel Hub Units
d. The Third generation wheel Hub Units
 
We have passed the evaluation of ISO9001:2000 , TS16949 Quality management system certification
Why Choose J.B ?
OE Quality
All J.B wheel hub assemblies are made with precision using state-of-the-art technology and manufactured using a set of strict quality-control criteria.
Reliability
Our team upholds safety and reliability as the 2 most significant guidelines when manufacturing our products. Using high calibrating tools, we are CZPT to engineer our bearings with the utmost precision for long term functionality.
Cost Efficiency
Here at J.B we believe in providing our customers with quality products at an affordable price. Why waste time and money with an inferior product when you can take advantage of J.B cost -efficient bearings and seals?
 

After-sales Service: 50000 Km
Warranty: 2 Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P6
Certification: ISO9001, TS16949
Samples:
US$ 28/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

What is the primary function of an axle hub in a vehicle’s wheel assembly?

The primary function of an axle hub in a vehicle’s wheel assembly is to connect the wheel to the axle and provide a mounting point for the wheel bearings. Here’s a detailed explanation of the primary functions of an axle hub:

1. Wheel Mounting:

The axle hub serves as the component that connects the wheel to the vehicle’s axle. It is typically a cylindrical or disc-shaped structure located at the center of the wheel assembly. The hub contains bolt holes or studs that align with the corresponding holes or studs on the wheel, allowing for secure attachment and proper alignment of the wheel.

2. Bearing Support:

The axle hub provides a mounting point for the wheel bearings. Wheel bearings are crucial components that allow the wheel to rotate smoothly while supporting the weight of the vehicle. The hub contains a bearing race or races, which are machined surfaces that support the inner and outer wheel bearings. The bearings fit snugly into the hub and enable the wheel to rotate freely around the axle.

3. Load Transmission:

Another important function of the axle hub is to transmit the load from the wheel to the axle. As the vehicle moves, various forces act on the wheel, including the weight of the vehicle, acceleration and braking forces, and lateral forces during turns. The axle hub, along with the wheel bearings, helps distribute and transfer these forces from the wheel to the axle, allowing for smooth and controlled movement of the vehicle.

4. Hub Assembly Integration:

In many vehicles, the axle hub integrates with other components of the wheel assembly. For example, it may have provisions for attaching the brake rotor or drum, which are essential for the vehicle’s braking system. In vehicles with front-wheel drive or all-wheel drive, the axle hub may also incorporate features for connecting the CV (constant velocity) joint or driveshaft, allowing for power transmission to the wheels.

5. Wheel Alignment:

The axle hub plays a role in maintaining proper wheel alignment. The hub’s design and dimensions are critical in ensuring that the wheel is centered and aligned correctly with the vehicle’s suspension system. Proper wheel alignment is essential for optimal handling, tire wear, and overall vehicle performance.

In summary, the primary function of an axle hub in a vehicle’s wheel assembly is to connect the wheel to the axle and provide a mounting point for the wheel bearings. It facilitates the secure attachment of the wheel, supports the wheel bearings for smooth rotation, transmits loads from the wheel to the axle, integrates with other components of the wheel assembly, and contributes to proper wheel alignment. The axle hub is a critical component that enables safe and efficient operation of the vehicle’s wheels.

axle hub

What role does the ABS sensor play in the context of an axle hub assembly?

The ABS (Anti-lock Braking System) sensor plays a crucial role in the context of an axle hub assembly. It is an integral component of the braking system and is responsible for monitoring the speed and rotational behavior of the wheels. Here’s a detailed explanation of the role of the ABS sensor in the context of an axle hub assembly:

  • Wheel speed monitoring: The primary function of the ABS sensor is to monitor the rotational speed of the wheels. It does this by detecting the teeth or magnetic patterns on a tone ring or reluctor ring mounted on the axle hub or adjacent to the wheel hub. By continuously measuring the speed of each wheel, the ABS sensor provides crucial data to the vehicle’s ABS system.
  • Anti-lock Braking System (ABS): The ABS system utilizes the data provided by the ABS sensors to determine if any wheel is about to lock up during braking. If a wheel is on the verge of locking up, the ABS system modulates the braking pressure to that wheel. This prevents the wheel from fully locking up, allowing the driver to maintain control of the vehicle and reducing the risk of skidding or loss of steering control.
  • Traction control: In addition to aiding the ABS system, the ABS sensors also play a role in the vehicle’s traction control system. By continuously monitoring the rotational speed of the wheels, the ABS sensors assist in detecting any wheel slippage or loss of traction. When a wheel slips, the traction control system can adjust the engine power output or apply brake pressure to the specific wheel to regain traction and maintain stability.
  • Stability control: Some modern vehicles incorporate stability control systems that rely on the ABS sensors to monitor the rotational behavior of the wheels. By comparing the speeds of individual wheels, the stability control system can detect and mitigate any potential loss of vehicle stability. This may involve applying brakes to specific wheels or adjusting engine power to help the driver maintain control in challenging driving conditions or during evasive maneuvers.
  • Diagnostic capabilities: The ABS sensors also provide diagnostic capabilities for the vehicle’s onboard diagnostic system. In the event of a fault or malfunction within the ABS system, the ABS sensors can transmit error codes to the vehicle’s computer, which can then be retrieved using a diagnostic scanner. This aids in the identification and troubleshooting of ABS-related issues.

The ABS sensor is typically mounted near the axle hub, with its sensor tip in close proximity to the tone ring or reluctor ring. It generates electrical signals based on the detected rotational patterns, which are then transmitted to the vehicle’s ABS control module for processing and action.

In summary, the ABS sensor plays a vital role in the context of an axle hub assembly. It monitors the rotational speed of the wheels, providing essential data for the ABS system, traction control, and stability control. The ABS sensor helps prevent wheel lockup during braking, enhances traction in slippery conditions, aids in maintaining vehicle stability, and contributes to the diagnostic capabilities of the ABS system.

axle hub

What is the importance of proper lubrication in maintaining a healthy axle hub?

Proper lubrication plays a crucial role in maintaining a healthy axle hub and ensuring its optimal performance and longevity. Here’s a detailed explanation:

An axle hub consists of several components, including wheel bearings, seals, and other internal parts. These components are subjected to high loads, friction, and heat generated during normal vehicle operation. Lubrication is essential to reduce friction, dissipate heat, and provide a protective barrier between moving parts. Here are the key reasons why proper lubrication is important for maintaining a healthy axle hub:

  • Reduced Friction: Adequate lubrication reduces friction between the moving parts of the axle hub. This minimizes wear and tear on the components and helps them operate smoothly. By reducing friction, proper lubrication helps prevent premature failure of critical parts, such as the wheel bearings.
  • Heat Dissipation: Axle hubs generate heat during operation due to the friction between the rotating components. The lubricant acts as a coolant, helping to dissipate heat and prevent excessive temperature buildup. Proper lubrication ensures that the heat is effectively managed, preventing overheating and potential damage to the axle hub.
  • Corrosion Prevention: Axle hubs are exposed to various environmental elements, including moisture, dirt, and road contaminants. These can lead to corrosion and rust, compromising the performance and structural integrity of the axle hub. Lubrication creates a protective barrier, preventing moisture and contaminants from reaching the critical components and reducing the risk of corrosion.
  • Seal Integrity: Proper lubrication helps maintain the integrity of the seals in the axle hub. Seals play a vital role in preventing the entry of contaminants and retaining the lubricant within the hub assembly. Insufficient lubrication can cause the seals to deteriorate prematurely, leading to lubricant leakage and potential damage to the axle hub.
  • Noise Reduction: Well-lubricated axle hubs operate quietly. The lubricant creates a cushioning effect, reducing noise and vibrations generated by the rotating components. This helps provide a comfortable and quiet driving experience.

It’s important to note that different axle hubs may require specific types of lubricants, such as grease or oil, depending on the design and manufacturer’s recommendations. Using the correct lubricant and following the specified lubrication intervals are crucial for maintaining a healthy axle hub. Over-lubrication or under-lubrication can lead to issues such as excess heat buildup, component damage, or inadequate protection.

Regular maintenance and inspection of the axle hub, including checking the lubricant level and quality, are essential. If any signs of contamination, leakage, or inadequate lubrication are observed, appropriate action should be taken, such as replenishing or replacing the lubricant and addressing any underlying issues.

In summary, proper lubrication is vital for maintaining a healthy axle hub. It reduces friction, dissipates heat, prevents corrosion, maintains seal integrity, and reduces noise. Adequate lubrication ensures smooth operation, prolongs the lifespan of the components, and helps prevent premature failures. Following the manufacturer’s recommendations regarding lubricant type and maintenance intervals is crucial for optimal axle hub performance and longevity.

China best 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for CZPT Rogue 5 Lugs Axle Hub Assembly Kit No/ABS   axle shaftChina best 512373 New Rear Wheel Bearing Hub Fit 2008-2013 for CZPT Rogue 5 Lugs Axle Hub Assembly Kit No/ABS   axle shaft
editor by CX 2023-12-06

China Hot selling Auto Hub Wheel Bearing Wheel Hub Assembly 43550-F4010 43550-10010 Front Axle Hub for CZPT CH-R and Corolla 2016 axle cv joint

Product Description

hub bearing automotive wheel bearing for front rear car wheel

Product Description

 

   
Name good quality wheel bearing
Brand  WNTN/support OEM brand
Material Chrome steel Gcr15, stainless steel
Precision rating ABEC-1 ABEC-3 ABEC-5 
Noisy Z1,Z2,Z3
Vibration V1,V2,V3
Number of row Single
payment terms T/T
quality strictly checked before sending out
features 1. High quality  
2. Competitive price 
3.Less friction and low noise 
4.durable
package 1.Plastic Tube/30

37.99

71

33

30

DAC38100700037

38.1

70

37

37

DAC38700037

38

70

37

37

DAC38700038

38

70

38

38

DAC38700038B

38

70

38

38

DAC/30

37.99

71.02

33

30

DAC38725716/33B

38

72.02

36

33

DAC38720040

38

72

40

40

DAC37990725716/33

37.99

72.02

36

33

DAC38730040

38

73

40

40

DAC37990740036/33

37.99

74

36

33

DAC/33

37.99

74.02

36

33

DAC/33B

37.99

74.02

36

33

DAC38740050

38

74

50

50

DAC38740450

38

74.04

50

50

DAC39680037

39

68

37

37

 

 

 

Packaging & Shipping

 

 

FAQ

 F&Q

Q:What the MQQ of your company?
A:MQQ is 1pcs.

Q:Could you accept OEM and customize?
A:YES,we can customize for you according to sample or drawing.

 

Q:Could you supply sample for free?
A:Yes,we can supply sample for free,do you mind to buy her a ticket?

 

Q:Dose your factory have any certificate?
A:yes.we have ISO 9001:2008,IQNET and SGS. If you want other like CE,we can do for you.

 

Q:IS you company factory or Trade Company?
A:We have our own factory ;our type is factory +trade.

 

Q:Could you tell me the material of our bearing?
A:We have chrome steel,and staninless steel,ceramic and plastic material.

 

Q:Could you offer door to door service?
A:Yes,by express(GHL,FEDEX,TNT,EMS,4-10 days to your city.)

 

Q:Coould you tell me the payment term of your company can accept?
A:T/T.Western Union,PayPal

 

Q:Could you tell me the delivery timr of your doods?
A:If stock,in 7days or base on your order quantity

Why Chose Us

Why Chose Us ?

1.Excellent and high quality control,high speed,low noise,long life
2.Best service
3.Prompt delivery
4.Competitive price
5.Small order accepted
6.Customers’ drawing or samples accepted
7.OEM service
8.ISO Standard

After-sales Service: 24 Hours Online
Warranty: One Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P5
Certification: ISO9001

axle hub

What steps are involved in the proper removal and installation of an axle hub assembly?

Properly removing and installing an axle hub assembly requires a systematic approach and the use of appropriate tools. Here are the detailed steps involved in the process:

  1. Gather the necessary tools: Before starting the removal and installation process, gather the required tools and equipment. This may include a jack, jack stands, lug wrench, socket set, torque wrench, pry bar, hammer, and a suitable wheel bearing grease.
  2. Prepare the vehicle: Park the vehicle on a flat surface and engage the parking brake. If necessary, loosen the lug nuts on the wheel associated with the axle hub assembly, but do not remove them yet.
  3. Jack up the vehicle: Use a jack to lift the vehicle off the ground at a suitable jacking point. Place jack stands under the vehicle to provide additional support and ensure safety. Carefully lower the vehicle onto the jack stands.
  4. Remove the wheel: Completely remove the lug nuts and take off the wheel to access the axle hub assembly.
  5. Disconnect brake components: Depending on the specific vehicle, there may be brake components attached to the axle hub assembly. This can include brake calipers, brake pads, and brake rotors. Follow the appropriate procedure to disconnect these components, which may involve removing caliper bolts, brake pad retaining clips, or rotor retaining screws.
  6. Disconnect the axle: If the axle shaft is connected to the axle hub assembly, disconnect it by removing the retaining nut or bolts. This step may vary depending on the type of axle and vehicle.
  7. Remove the axle hub assembly: The axle hub assembly is typically secured to the steering knuckle or suspension component by bolts or studs. Use the appropriate tools to remove these fasteners and carefully detach the axle hub assembly from the vehicle. In some cases, the assembly may be tight and require the use of a pry bar or hammer to gently separate it from the mounting point.
  8. Clean and inspect: Once the axle hub assembly is removed, clean the mounting surface on the steering knuckle or suspension component. Inspect the mounting area for any damage or corrosion that may affect the installation of the new axle hub assembly. Also, inspect the axle shaft and surrounding components for any signs of damage or wear.
  9. Install the new axle hub assembly: Apply a thin layer of wheel bearing grease to the mounting surface of the steering knuckle or suspension component. Carefully align the new axle hub assembly with the mounting holes and slide it into place. Install the bolts or studs and tighten them according to the manufacturer’s specifications. If there are any retaining nuts or bolts for the axle shaft, reinstall them and torque them to the recommended values.
  10. Reconnect brake components: Reinstall any brake components that were disconnected, such as brake calipers, brake pads, and brake rotors. Make sure to follow the correct procedure and torque specifications for these components.
  11. Reinstall the wheel: Put the wheel back onto the vehicle and hand-tighten the lug nuts. Lower the vehicle from the jack stands using a jack, and then use a torque wrench to tighten the lug nuts to the manufacturer’s recommended torque specification.
  12. Test and verify: Once the axle hub assembly is installed and all components are properly reconnected, take the vehicle for a test drive. Pay attention to any unusual noises, vibrations, or handling issues. Verify that the axle hub assembly is functioning correctly and that there are no leaks or other problems.

It’s important to note that the specific steps and procedures may vary depending on the vehicle make and model. Always consult the vehicle’s service manual or seek professional assistance if you are unsure about any aspect of the removal and installation process.

In summary, the proper removal and installation of an axle hub assembly involve gathering the necessary tools, preparing the vehicle, jacking up the vehicle, removing the wheel, disconnecting brake components and the axle, removing the old axle hub assembly, cleaning and inspecting, installing the new assembly, reconnecting brake components, reinstalling the wheel, and finally testing and verifying the functionality of the axle hub assembly.

axle hub

Where can I find a comprehensive guide for DIY replacement of an axle hub?

If you are looking for a comprehensive guide to assist you with the DIY (Do-It-Yourself) replacement of an axle hub, there are several reliable sources you can refer to. Here’s a detailed explanation:

  • Manufacturer’s Service Manual: The first and most authoritative source of information for any vehicle repair or maintenance task is the manufacturer’s service manual. The service manual provides detailed instructions, diagrams, and specifications specific to your vehicle’s make, model, and year. It covers all aspects of the vehicle, including axle hub replacement procedures. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
  • Online Repair Guides: Many reputable automotive websites and forums offer comprehensive online repair guides. These guides often include step-by-step instructions, accompanied by photographs or illustrations, to help you through the process of replacing an axle hub. Some websites compile user-contributed guides, while others are created by automotive professionals. Popular sources for online repair guides include AutoZone, RepairPal, and iFixit.
  • Video Tutorials: Video tutorials can be invaluable resources for visual learners. Websites like YouTube host a wide range of DIY automotive repair videos that cover various tasks, including axle hub replacement. Watching a video tutorial can provide a clear demonstration of the required steps, tools, and techniques involved in the process. You can search for specific video tutorials by using keywords such as “DIY axle hub replacement” along with your vehicle’s make and model.
  • Automotive Forums: Online automotive forums are communities where enthusiasts and professionals share knowledge and experiences. Forums like Reddit’s r/MechanicAdvice, Automotive Forums, or specific forums dedicated to your vehicle’s make or model can be excellent sources of information. You can search or post questions specific to axle hub replacement, and experienced members may provide detailed guidance, tips, or even links to comprehensive guides they have found useful.
  • Library Resources: Public libraries often have a selection of automotive repair manuals and guides available for borrowing. These printed resources can provide comprehensive instructions and illustrations for various repair tasks, including axle hub replacement. Look for repair manuals specific to your vehicle’s make, model, and year in the automotive section of your local library.

When using any guide or resource for DIY repairs, it’s important to exercise caution and ensure your own safety. Follow all recommended safety procedures, use the appropriate tools, and take necessary precautions. If you are unsure or uncomfortable with any aspect of the repair process, it is advisable to seek assistance from a qualified mechanic or professional technician.

In summary, a comprehensive guide for DIY replacement of an axle hub can be found in various sources such as the manufacturer’s service manual, online repair guides, video tutorials, automotive forums, and library resources. These resources provide step-by-step instructions and guidance to help you successfully replace an axle hub. Remember to prioritize safety and seek professional help if needed.

axle hub

Can axle hubs be upgraded for better performance, and if so, how?

Axle hubs can be upgraded to improve performance in certain cases. Upgrading axle hubs can involve various modifications and enhancements. Here’s a detailed explanation:

Before considering an upgrade, it’s important to evaluate the specific needs and goals for the vehicle. Upgrades to axle hubs can target areas such as durability, load capacity, handling, and overall performance. Here are some potential ways to upgrade axle hubs:

  • High-Performance Bearings: Upgrading to high-performance wheel bearings can improve the durability and load capacity of the axle hub. High-quality bearings made from stronger materials or featuring advanced designs can provide enhanced reliability and performance under demanding conditions.
  • Performance Seals: Upgraded seals can provide better protection against contaminants and improve the overall sealing performance of the axle hub. Enhanced seals can help prevent dirt, water, and other debris from entering the hub assembly, increasing its lifespan and reducing the risk of damage.
  • Reinforced Hub Components: In some cases, upgrading to axle hubs with reinforced components, such as stronger hub bodies or larger studs, can enhance their load-carrying capacity and overall strength. This can be particularly beneficial for vehicles that operate under heavy loads or encounter rugged terrain.
  • Improved Cooling: Upgrading the cooling system of the axle hub can help dissipate heat more effectively, reducing the risk of overheating and prolonging the lifespan of the hub components. This can involve the addition of cooling fins, better ventilation, or even the use of aftermarket cooling solutions.
  • Performance Coatings: Applying specialized coatings to the axle hub surfaces can provide better protection against corrosion and wear. Coatings such as zinc plating or ceramic coatings can enhance the durability and performance of the hub components, particularly in harsh environments.
  • Aftermarket Axle Hub Assemblies: In some cases, aftermarket axle hub assemblies can offer performance-oriented upgrades over stock components. These assemblies may incorporate design improvements, advanced materials, or specialized features to enhance performance, reliability, and overall functionality.

It’s important to note that axle hub upgrades may require careful consideration of compatibility with other vehicle components, such as brakes, wheels, and suspension. Additionally, some upgrades may affect the vehicle’s warranty or require professional installation. It is recommended to consult with knowledgeable professionals, such as mechanics or specialists, who can provide guidance on suitable upgrades and ensure proper installation.

When considering axle hub upgrades, it’s also essential to assess the overall condition of the vehicle and address any underlying issues. Regular maintenance, such as proper lubrication, inspection, and timely replacement of worn components, is crucial for maximizing the performance and lifespan of the axle hubs.

In summary, axle hubs can be upgraded to improve performance in certain cases. Upgrades may involve high-performance bearings, improved seals, reinforced hub components, enhanced cooling, performance coatings, or aftermarket axle hub assemblies. It’s important to assess the specific needs of the vehicle, consult with professionals, and consider compatibility with other components when pursuing axle hub upgrades.

China Hot selling Auto Hub Wheel Bearing Wheel Hub Assembly 43550-F4010 43550-10010 Front Axle Hub for CZPT CH-R and Corolla 2016   axle cv jointChina Hot selling Auto Hub Wheel Bearing Wheel Hub Assembly 43550-F4010 43550-10010 Front Axle Hub for CZPT CH-R and Corolla 2016   axle cv joint
editor by CX 2023-12-04

China best Passenger Car Axle with AAR Standards axle bearing

Product Description

1  About Tedrail
Terail is a professional manufacturer of  railway products located in ZheJiang China. We can supply most of Bogie parts, Wagon parts, Coach parts, Locomotive parts based on customer requirements. Expert in design, manufacture, and inspection, Tedrail can offer you guaranteed products and also complete solution of railway industry. 
2  What axle steel grades and standards Tedrail support?
Tedrail support and confirm to a wide range of axle standards and steel grade.
 
Standard                 Material Heat                    Treatment Approach
TB/T 2945-1999          LZ50                               N(Twice) followed by T
AAR M-101-2011         AAR Grade F                 N(Twice) followed by T
                                    AAR Grade G                 Q followed by T
                                    AAR Grade H                  N,Q followed by T
EN 13261-2009           EA1N                               N
                                    EA1T                               Q followed T
                                    EA4T                               Q followed T
UIC 811-1-1987             A1                                (U),N,T 
                                      A2                                 N
                                      A3                                N,T
                                      A4                                 T
                                      A5                                  T
Less common standards:
JIS E 4502  
GMRT 2466
IRS 16/95 
CME-1   
Customized technical specification can be met.
REF: N-Normalizing T-Tempering Q-Quenching U-Untreated
 
Chemical Analysis of Wide-used Steel in Different Standards  
LZ50 Elements C Mn Si P S Cr Ni Cu T.Al
Percentage% 0.47-0.57 0.60-0.90 0.17-0.40 ≤0.03 ≤0.03 ≤0.30 ≤0.30 ≤0.25 ≥0.02
Tolerance ±0.02 ±0.03 ±0.02 +0.005 +0.005        
 
AAR GradeF Elements C Mn Si P S V      
Percentage% 0.45-0.59 0.75-1.00 ≥0.15 ≤0.045 ≤0.05 0.02-0.08      
Tolerance   ±0.03 -0.02 +0.008 +0.008 ±0.001      
 
EA1N Elements C Mn Si P S Cr Ni Cu V Mo
Percentage% ≤0.40 ≤1.20 ≤0.50 ≤0.02 ≤0.02 ≤0.30 ≤0.30 ≤0.30 ≤0.06 ≤0.08
Tolerance       +0.005 +0.005        
 
A1 Elements C Mn Si P S Cr Ni Cu V Mo
Percentage% ≤0.37 ≤1.12 ≤0.46 ≤0.04 ≤0.04 ≤0.30 ≤0.30 ≤0.30 ≤0.05 ≤0.05
Tolerance +0.03 +0.08 +0.04            
 

3 The Manufacturing
The mail process of axle manufacturing are the reducing from ingot or bloom, heat-treatment , tensile and ultrasonic test, machining and coating. From the bloom check to tensile or ultrasonic test, Tedrail will take a serious control of the manufacturing to guarantee the quality of axle.
 

4 How do we guarantee the quality?
Experienced Design Engineering 
After our talented engineers get your drawings, they’ll quickly grasp it and point out the key-points.
Mature Workshop Directing 
Mature workshop directing will make sure the manufacturing process precisely control the quality so that the customer’s demands will be confirmed.
Comprehensive Tests and Inspections
Tedrail will carry out comprehensive tests to make sure the quality of Axle. Any test in relevant production procedure must be approved or the axle will be eliminated.
Test  Category
Chemical Analysis
Tensile and Impact Test with Mechanical Analysis
Micrographic/Microscopic Test
Macrographic /Macroscopic Test
Ultrasonic Test
Magnetic Test 
Appearance and Dimensions Inspection
 
Serious Quality Assurance
After the production is done, our quality assurance team will double-check every axle to guarantee that the axle meet the requirements of clients. 

ZheJiang tedrail industrial co.,ltd is a high -tech enterprise intergrating railway passenger cars ,metro vehicles ,railway vehicle and rail fitting design and manufacturing .the company is committed to provide customers with the railway passengers transport system,railway freight system solutions ,the company has an experienced railway vehicle design team and ready to provide users with fast ,high-quality services at any time .the company products have been exported to the United States ,South Afric ,Brazil ,and other countries .covering the vehicle ,bogie and accessories ,coupler and accessories .gangway ,seat ,luggage rack ,air conditioning ,driver operation desk ,electrical cabinets ,electric connectors ,PIS system,FRP CZPT materials.

 

Customized: Customized
Certification: ISO9001
Type: Shoulder
Axle Type: Finished
Payment: T/T,LC
Delivery Time: 30days
Customization:
Available

|

Customized Request

axle

Where can I find information on axle load limits for various types of vehicles?

When seeking information on axle load limits for different types of vehicles, there are several reliable sources where you can find the necessary information. Here’s a detailed explanation of where you can find information on axle load limits:

1. Vehicle Owner’s Manual:

The first and most accessible source of information on axle load limits is the vehicle owner’s manual. The owner’s manual provided by the vehicle manufacturer typically includes important details about the vehicle’s specifications, including axle load limits. Look for sections related to vehicle loading, weight distribution, or axle specifications to find the recommended load limits for each axle of your specific vehicle model.

2. Government Transportation Authorities:

Government transportation authorities, such as departments of transportation or road transport authorities, often provide guidelines and regulations regarding vehicle weight limits, including axle load limits. These authorities establish and enforce weight restrictions to ensure road safety and prevent damage to infrastructure. Visit the website of your local or national transportation authority to access relevant regulations or guidelines pertaining to axle load limits for various types of vehicles.

3. Commercial Vehicle Regulations:

If you are specifically interested in axle load limits for commercial vehicles, such as trucks or buses, consult the commercial vehicle regulations applicable in your region. These regulations are established to ensure safe and efficient operation of commercial vehicles on public roads. Regulatory bodies responsible for commercial vehicle operations often provide detailed information on axle load limits, weight distribution requirements, and other related specifications.

4. Vehicle Manufacturer or Dealer:

If you require axle load limit information for a specific vehicle model or variant, contacting the vehicle manufacturer or a local authorized dealer can be helpful. They can provide accurate and up-to-date information specific to your vehicle. Provide them with the vehicle identification number (VIN) or other relevant details to ensure they can assist you accurately.

5. Online Resources and Databases:

There are online resources and databases dedicated to providing information on vehicle specifications, including axle load limits. These resources may include vehicle data websites, forums, or government databases that compile and provide access to vehicle specifications and regulatory information. Conduct an internet search using relevant keywords to find reliable online sources that offer information on axle load limits for various types of vehicles.

When seeking information on axle load limits, it’s crucial to ensure that the information you obtain is accurate, up-to-date, and applicable to your specific vehicle and jurisdiction. Regulations and load limits can vary depending on the country, region, vehicle type, and other factors. Therefore, it is advisable to consult official sources or seek professional advice to ensure compliance with applicable regulations and ensure safe and legal operation of your vehicle.

axle

Can you provide insights into the advancements in axle technology in recent years?

In recent years, there have been significant advancements in axle technology to enhance performance, efficiency, and safety in vehicles. Here are some insights into the key advancements:

  1. Lightweight Materials:
  2. One notable advancement is the use of lightweight materials in axle construction. Manufacturers have increasingly utilized materials such as aluminum alloys and high-strength steels to reduce the weight of axles without compromising strength and durability. Lighter axles contribute to improved fuel efficiency and overall vehicle performance.

  3. Electronic Differential:
  4. Electronic differentials, also known as eDiffs, have gained popularity in recent years. They utilize sensors, actuators, and control algorithms to monitor and distribute torque between the wheels more efficiently. Electronic differentials enhance traction, stability, and handling by actively managing torque distribution, especially in vehicles equipped with advanced stability control systems.

  5. Advanced Axle Bearings:
  6. Axle bearings have seen advancements in design and materials to reduce friction, improve efficiency, and enhance durability. For example, the use of roller bearings or tapered roller bearings has become more prevalent, offering reduced frictional losses and improved load-carrying capacity. Some manufacturers have also introduced sealed or maintenance-free bearings to minimize maintenance requirements.

  7. Electric Axles:
  8. With the rise of electric vehicles (EVs) and hybrid vehicles, electric axles have emerged as a significant technological advancement. Electric axles integrate electric motors, power electronics, and gear systems into the axle assembly. They eliminate the need for traditional drivetrain components, simplify vehicle packaging, and offer benefits such as instant torque, regenerative braking, and improved energy efficiency.

  9. Active Suspension Integration:
  10. Advancements in axle technology have facilitated the integration of active suspension systems into axle designs. Active suspension systems use sensors, actuators, and control algorithms to adjust the suspension characteristics in real-time, providing improved ride comfort, handling, and stability. Axles with integrated active suspension components offer more precise control over vehicle dynamics.

  11. Improved Sealing and Lubrication:
  12. Axles have seen advancements in sealing and lubrication technologies to enhance durability and minimize maintenance requirements. Improved sealing systems help prevent contamination and retain lubricants, reducing the risk of premature wear or damage. Enhanced lubrication systems with better heat dissipation and reduced frictional losses contribute to improved efficiency and longevity.

  13. Autonomous Vehicle Integration:
  14. The development of autonomous vehicles has spurred advancements in axle technology. Axles are being designed to accommodate the integration of sensors, actuators, and communication systems necessary for autonomous driving. These advancements enable seamless integration with advanced driver-assistance systems (ADAS) and autonomous driving features, ensuring optimal performance and safety.

It’s important to note that the specific advancements in axle technology can vary across different vehicle manufacturers and models. Furthermore, ongoing research and development efforts continue to drive further innovations in axle design, materials, and functionalities.

For the most up-to-date and detailed information on axle technology advancements, it is advisable to consult automotive manufacturers, industry publications, and reputable sources specializing in automotive technology.

axle

What are the signs of a worn or failing axle, and how can I troubleshoot axle issues?

Identifying the signs of a worn or failing axle is important for maintaining the safety and functionality of your vehicle. Here are some common signs to look out for and troubleshooting steps you can take to diagnose potential axle issues:

  1. Unusual Noises:
  2. If you hear clunking, clicking, or grinding noises coming from the area around the wheels, it could indicate a problem with the axle. These noises may occur during acceleration, deceleration, or when turning. Troubleshoot by listening carefully to the location and timing of the noises to help pinpoint the affected axle.

  3. Vibrations:
  4. A worn or failing axle can cause vibrations that can be felt through the steering wheel, floorboard, or seat. These vibrations may occur at certain speeds or during specific driving conditions. If you experience unusual vibrations, it’s important to investigate the cause, as it could be related to axle problems.

  5. Uneven Tire Wear:
  6. Inspect your tires for uneven wear patterns. Excessive wear on the inner or outer edges of the tires can be an indication of axle issues. Misaligned or damaged axles can cause the tires to tilt, leading to uneven tire wear. Regularly check your tires for signs of wear and take note of any abnormalities.

  7. Difficulty Steering:
  8. A worn or damaged axle can affect steering performance. If you experience difficulty in steering, such as stiffness, looseness, or a feeling of the vehicle pulling to one side, it may be due to axle problems. Pay attention to any changes in steering responsiveness and address them promptly.

  9. Visible Damage or Leaks:
  10. Inspect the axles visually for any signs of damage or leaks. Look for cracks, bends, or visible fluid leaks around the axle boots or seals. Damaged or leaking axles can lead to lubrication loss and accelerated wear. If you notice any visible issues, it’s important to have them inspected and repaired by a qualified mechanic.

  11. Professional Inspection:
  12. If you suspect axle issues but are unsure about the exact cause, it’s advisable to seek a professional inspection. A qualified mechanic can perform a thorough examination of the axles, suspension components, and related systems. They have the expertise and tools to diagnose axle problems accurately and recommend the appropriate repairs.

It’s important to note that troubleshooting axle issues can sometimes be challenging, as symptoms may overlap with other mechanical problems. If you’re uncertain about diagnosing or repairing axle issues on your own, it’s recommended to consult a professional mechanic. They can provide a proper diagnosis, ensure the correct repairs are performed, and help maintain the safety and performance of your vehicle.

China best Passenger Car Axle with AAR Standards   axle bearingChina best Passenger Car Axle with AAR Standards   axle bearing
editor by CX 2023-11-10

China Standard Wheel Loader Spare Parts Spindle Demultiplier Rear Bearing Cover Gasket Herth+Buss Jakoparts Wheel Bearing Kit Mapco Wheel Bearing Kit Left Rear Axle Wheel Hub axle api

Product Description

Dear friends!
My name is Irina Mamoshina. Please pay a moment of your attention : -).
Our company HangZhou CZPT International Trade Co., Ltd is engaged in the production and sale of auto parts for Chinese special equipment, engines and equipment assembly. We also produce metal parts ourselves, such as gears, fingers, filters, etc.
Our products include:
 
ZL30G, ZL40G, ZL50G, ZL50GL, ZL60G, LW3 Roller needle Подшипник роликовый игольчатый 46 33 12JS160T-17 0571 1 bearing pneumatic regulating control valve пневматический регулирующий контрольный клапан  54 34 F91444 oil seal cuff сальник манжетка 88 35 192311E elongated intermediate shaft of the auxiliary gearbox assembly удлиненный промежуточный вал вспомогательной КПП в сборе 18 36 14341  Gear Shift cylinder piston Поршень цилиндра переключения диапазонов передач 60 37 14344  O-shaped O-ring О-образное уплотнительное кольцо 140 38 14345  O-shaped O-ring О-образное уплотнительное кольцо 140 39 14349  Cylinder head cover sealing gasket Прокладка уплотнительная крышки головки блока цилиндров 80 40 14765  O-shaped O-ring О-образное уплотнительное кольцо 140 41 12JS160T-1707062 Gear shift cylinder gear shift Цилиндр переключения диапазонов передач 50 42 F99857 cylinder cover for auxiliary gearbox control крышка цилиндра переключения передач управления вспомогательной КПП 30 43 JS intermediate shaft cover gasket for auxiliary gearbox demultiplicator прокладка крышки промежуточного вала демультипликатора вспомогательной КПП 50 44 JS180-17 0571 6 rear bearing cover gasket for spindle прокладка крышки заднего подшипника демультипликатора шпинделя 50 45 615-6 housing gasket clutch картер сцепления 4 115 Q61304 housing cone plug пробка конусная 40 116 JS180A-1757140-3 primary shaft bearing cover primary shaft крышка подшипника первичного вала 4 117 JS180A-1757136 nut гайка первичного вала 10 118 C57120 locking ring кольцо стопорное 12 119 155712К Bearing Подшипник 8 120 16463  gear bushing втулка шестерни 8 121 14750  locking ring кольцо стопорное 8 122 JS180A-1757130-3 primary shaft вал первичный 4 123 12JS2 Locking flange of the demultiplier bearing Фланец фиксаторный подшипника демультипликатора 12 138 С571 Bolt M10x22 Болт М10х22 20 139 12JS2 Bearing подшипник 6 149 10JS160-17571 Cover крышка 10 150 С57132 cuff of the rear bearing cover манжета крышки заднего подшипника 40 151 F91 intermediate shaft reverse gear промежуточный вал передачи заднего хода 40 215 12JS160T-17 0571 1 bearing secondary shaft assembly подшипник вторичного вала в сборе 10 216 12.7G1, A, , B7615-1571/411B/Yuchai YC6B125/YC6108 Engine exhaust valve Клапан выпускной двигателя 12 370 251405716/251757103/40*140 Steering cylinder pin Палец рулевого цилиндра 20 371 255715712/Z3.8.5/255715712/Z3.8.5/50*145 Rear axle balance pin (fork) Палец балансира заднего моста (вилка) 10 372 Z5G.6.21/251405710/80*240 Pin fork (bucket hydraulic cylinder frame) Палец вилка (рама гц ковша) 6 373 , BA/YC6B125/YC6108/Yuchai Fuel tube (return of injectors) of the CZPT engine Трубка топливная (обратка форсунок) двигателя 1 374 630-1112,, 411 2nd gear gearbox shaft Вал КПП 2-ой передачи 1 393 LW3 Reverse gear gearbox shaft Вал КПП задней передачи 1 394 83513201/SP105819/PY180.39.02-01 Main hub shaft Вал основной ступичный 1 395 Z3.4.2-01/LW3 Shaft bushing Втулка вала 4 403 ZL50E-6-2/2504C Water pump Насос водяной 2 444 CBT-E316/CBN-F316 Hydraulic pump Насос гидравлический 1 445 CBG2040/JHP2040/W0606A Return tube Трубка обратки 2 481 Клапан тормозной Brake valve 1 605 Z30.4.13 Клапан трансмиссии Transmission valve 1 606 ZL50E-II-001/Xihu (West Lake) Dis.n 956, ZLM50E-5 Колодка тормозная на погрузчик Brake pad for loader 10 607 Z50B.2.1-3  Муфта включения Switching coupling 1 608 Z50B.2.1-30 Муфта включения Switching coupling 1 609 zlm50E-5 Ремкомплект гидроцилиндра опрокидывания ковша Bucket Tipping Hydraulic Cylinder Repair Kit 1 610 zlm50E-6 Ремкомплект гидроцилиндра подъема стрелы Boom Lifting Hydraulic Cylinder Repair Kit 1 611 zlm50E-5 Ремкомплект гидроцилиндра рулевого Steering cylinder Repair kit 1 612 Z30.6.3B-RKT Ремкомплект суппорта тормозного Brake Caliper Repair Kit 1 613 50*80*12/B-G09877A-0571 Сальник Oil seal 6 614 Z50B.14.21-4 Фильтр гидравлический Hydraulic filter 5 615 Z50E.14.1.3 Фильтр гидравлический Hydraulic filter 5 616 W-15-00057 Фильтр трансмиссии Transmission filter 6 617 Z55S030000002T9 Вал насоса КПП Gearbox pump shaft 1 618 Z35F5715571B Муфта  резиновая Rubber coupling 2 619 Z50E0301 Насос КПП Gear Shift Pump 1 620 CG50.6.2-10 Генератор Generator 1 2 654 C6121/6N9294/5C9088 Генератор Generator 2 2 655 16Y-11-00000/YJ380 Гидротрансформатор (Конвертер) Torque Converter (Converter) 1 656 3418684/3418529 Головка блока цилиндров в сборе Cylinder head assembly 2 1 657 7N8866 Головка блока цилиндров ДВС (НЕ В СБОРЕ) Engine cylinder head (NOT ASSEMBLED) 1 658 16Y-15-00026 Диск КПП (поршень) Gearbox disc (piston) 2 659 16Y-16-57102 Диск нажимной Push disk 2 660 16Y-16-0571 Диск фрикционный Friction disc 1 10 661 16Y-16-57100 Диск фрикционный Friction disc 2 10 662 16Y-15-09000 Диск фрикционный КПП Friction gearbox disc 1 10 663 175-15-12713 Диск фрикционный КПП Friction gearbox disc 2 10 664 198-30-16612+170-27-12340 Доукон малый (КОМПЛЕКТ) Doukon Small (SET) 5 665 ZL50G2-11100-2Y Зуб боковой правый Right lateral tooth 4 666 175-20-30000 Кардан (муфта в сборе) Cardan (coupling assembly) 1 667 D2711-10500/D2700-10500 Клаксон Klaxon 3 668 16Y-11-30000 Клапан ГТР Torque Converter Valve 1 669 154-49-51100 Клапан регулировки давления Pressure control valve 1 670 701-30-51002 Главный редукционный клапан в сборе Main pressure reducing valve assembly 1 671 (3 0571 80+315719+3012332+315717)/3803471/3801755 Кольца поршневые (комплект 18 шт.) Piston rings (set of 18 pcs.) 2 672 4058967+4058968+4058969 Кольца поршневые (КОМПЛЕКТ) Piston rings (SET) 2                                                                                

Certification: CCC, COP, ISO9001, CE, E-Mark, RoHS, TS16949
Standard Component: Non-Standard Component
Technics: Push
Material: Aluminum
Type: Cylinder Head
Transport Package: Paperboard

axle hub

What steps are involved in the proper removal and installation of an axle hub assembly?

Properly removing and installing an axle hub assembly requires a systematic approach and the use of appropriate tools. Here are the detailed steps involved in the process:

  1. Gather the necessary tools: Before starting the removal and installation process, gather the required tools and equipment. This may include a jack, jack stands, lug wrench, socket set, torque wrench, pry bar, hammer, and a suitable wheel bearing grease.
  2. Prepare the vehicle: Park the vehicle on a flat surface and engage the parking brake. If necessary, loosen the lug nuts on the wheel associated with the axle hub assembly, but do not remove them yet.
  3. Jack up the vehicle: Use a jack to lift the vehicle off the ground at a suitable jacking point. Place jack stands under the vehicle to provide additional support and ensure safety. Carefully lower the vehicle onto the jack stands.
  4. Remove the wheel: Completely remove the lug nuts and take off the wheel to access the axle hub assembly.
  5. Disconnect brake components: Depending on the specific vehicle, there may be brake components attached to the axle hub assembly. This can include brake calipers, brake pads, and brake rotors. Follow the appropriate procedure to disconnect these components, which may involve removing caliper bolts, brake pad retaining clips, or rotor retaining screws.
  6. Disconnect the axle: If the axle shaft is connected to the axle hub assembly, disconnect it by removing the retaining nut or bolts. This step may vary depending on the type of axle and vehicle.
  7. Remove the axle hub assembly: The axle hub assembly is typically secured to the steering knuckle or suspension component by bolts or studs. Use the appropriate tools to remove these fasteners and carefully detach the axle hub assembly from the vehicle. In some cases, the assembly may be tight and require the use of a pry bar or hammer to gently separate it from the mounting point.
  8. Clean and inspect: Once the axle hub assembly is removed, clean the mounting surface on the steering knuckle or suspension component. Inspect the mounting area for any damage or corrosion that may affect the installation of the new axle hub assembly. Also, inspect the axle shaft and surrounding components for any signs of damage or wear.
  9. Install the new axle hub assembly: Apply a thin layer of wheel bearing grease to the mounting surface of the steering knuckle or suspension component. Carefully align the new axle hub assembly with the mounting holes and slide it into place. Install the bolts or studs and tighten them according to the manufacturer’s specifications. If there are any retaining nuts or bolts for the axle shaft, reinstall them and torque them to the recommended values.
  10. Reconnect brake components: Reinstall any brake components that were disconnected, such as brake calipers, brake pads, and brake rotors. Make sure to follow the correct procedure and torque specifications for these components.
  11. Reinstall the wheel: Put the wheel back onto the vehicle and hand-tighten the lug nuts. Lower the vehicle from the jack stands using a jack, and then use a torque wrench to tighten the lug nuts to the manufacturer’s recommended torque specification.
  12. Test and verify: Once the axle hub assembly is installed and all components are properly reconnected, take the vehicle for a test drive. Pay attention to any unusual noises, vibrations, or handling issues. Verify that the axle hub assembly is functioning correctly and that there are no leaks or other problems.

It’s important to note that the specific steps and procedures may vary depending on the vehicle make and model. Always consult the vehicle’s service manual or seek professional assistance if you are unsure about any aspect of the removal and installation process.

In summary, the proper removal and installation of an axle hub assembly involve gathering the necessary tools, preparing the vehicle, jacking up the vehicle, removing the wheel, disconnecting brake components and the axle, removing the old axle hub assembly, cleaning and inspecting, installing the new assembly, reconnecting brake components, reinstalling the wheel, and finally testing and verifying the functionality of the axle hub assembly.

axle hub

Can a worn or damaged wheel bearing impact the performance of an axle hub?

Yes, a worn or damaged wheel bearing can significantly impact the performance of an axle hub. The wheel bearing plays a crucial role in supporting the weight of the vehicle and allowing the wheels to rotate smoothly. Here’s a detailed explanation of how a worn or damaged wheel bearing can affect the performance of an axle hub:

  • Wheel rotation: The axle hub, along with the wheel bearing, enables the smooth rotation of the wheel. When the wheel bearing is worn or damaged, it can cause irregular or uneven rotation of the wheel. This can result in vibrations, noise, and an overall rough ride quality.
  • Excessive play: A worn wheel bearing may develop excessive play or looseness. This can cause the wheel to wobble or have noticeable movement when jacked up or when driving. Excessive play in the wheel bearing can affect the vehicle’s stability, handling, and control, making it more difficult to steer accurately.
  • Noise: Worn or damaged wheel bearings often produce noticeable noise. The noise can vary from a low humming or rumbling sound to a high-pitched whining or grinding noise. The noise may become more pronounced when turning or when the vehicle is under load. Ignoring the noise and continuing to drive with a faulty wheel bearing can lead to further damage and potential safety hazards.
  • Heat buildup: A damaged wheel bearing may generate excessive heat due to increased friction and inadequate lubrication. The heat buildup can cause the bearing to expand, leading to further damage and potential failure. Overheated wheel bearings can contribute to premature wear of other components within the axle hub assembly, such as the axle shaft or hub assembly itself.
  • Uneven tire wear: A worn or damaged wheel bearing can result in uneven tire wear. As the wheel doesn’t rotate properly or experiences excessive play, it can cause the tire to wear unevenly. This can lead to premature tire wear on specific areas of the tread, affecting the tire’s performance, lifespan, and overall safety.
  • Reduced fuel efficiency: When a wheel bearing is damaged or worn, it can create additional resistance and drag on the wheel. This increased rolling resistance can have a negative impact on fuel efficiency, causing the vehicle to consume more fuel to maintain speed and overcome the additional resistance. Thus, a faulty wheel bearing can lead to decreased fuel efficiency and increased operating costs.

It’s important to address any signs of a worn or damaged wheel bearing promptly. If you suspect a problem with the wheel bearing or experience any of the symptoms mentioned above, it is recommended to have the vehicle inspected by a qualified mechanic or automotive technician. They can assess the condition of the wheel bearing and perform the necessary repairs or replacement to restore the proper performance of the axle hub and ensure safe operation of the vehicle.

In summary, a worn or damaged wheel bearing can have a significant impact on the performance of an axle hub. It can affect wheel rotation, cause excessive play, produce noise, lead to heat buildup, result in uneven tire wear, and reduce fuel efficiency. Prompt inspection and necessary repairs or replacement of a faulty wheel bearing are essential to maintain the optimal performance and safety of the axle hub.

axle hub

Can axle hubs impact the alignment of a vehicle, and how is this corrected?

Axle hubs can indeed impact the alignment of a vehicle, and any alignment issues arising from the axle hubs should be corrected to ensure optimal vehicle handling, tire wear, and overall safety. Here’s a detailed explanation:

An axle hub is a critical component that connects the wheel assembly to the vehicle’s suspension. It houses the wheel bearings and provides the mounting point for the wheel. If an axle hub is damaged, worn, or improperly installed, it can lead to misalignment issues. Here are a few ways axle hubs can impact vehicle alignment:

  • Bearing Wear: Axle hubs contain wheel bearings that allow the wheels to rotate smoothly. If the bearings are worn or damaged, they can introduce play or uneven movement in the wheel assembly. This can result in misalignment, causing the vehicle to pull to one side or affect the camber, toe, or caster angles.
  • Improper Installation: If an axle hub is not installed correctly, it can introduce misalignment issues. For example, if the hub is not tightened to the specified torque or if the mounting surfaces are not properly cleaned, it can result in uneven pressure distribution and misalignment.
  • Impact Damage: Axle hubs can get damaged due to accidents, hitting potholes, or other impacts. Any deformation or misalignment of the axle hub can affect the alignment of the wheel assembly.

To correct alignment issues caused by axle hubs, the following steps are typically taken:

  1. Inspection: A thorough inspection of the axle hubs is conducted to identify any damage, wear, or improper installation. This may involve removing the wheels and visually examining the axle hubs for signs of damage or wear.
  2. Replacement: If the axle hubs are found to be damaged, worn, or improperly installed, they need to be replaced. Replacement axle hubs should be sourced from reputable manufacturers or OEM (Original Equipment Manufacturer) suppliers to ensure proper fit and alignment.
  3. Wheel Alignment: After replacing the axle hubs, a wheel alignment procedure is necessary to correct any misalignment caused by the previous issues. This typically involves adjusting the camber, toe, and caster angles to the manufacturer’s specifications using specialized alignment equipment.
  4. Additional Repairs: In some cases, axle hub-related alignment issues may have caused additional damage to suspension components or steering linkage. These components should be inspected and repaired as needed to ensure proper alignment and functionality.

It’s important to note that correcting alignment issues caused by axle hubs generally requires the expertise of a qualified mechanic or alignment specialist. They have the necessary knowledge, experience, and equipment to accurately diagnose and rectify alignment problems associated with axle hubs.

In summary, axle hubs can impact the alignment of a vehicle. Issues such as bearing wear, improper installation, or impact damage can introduce misalignment. To correct these alignment issues, a thorough inspection of the axle hubs is conducted, followed by replacement if necessary. Afterward, a wheel alignment procedure is performed to adjust the angles to the manufacturer’s specifications. Professional assistance from a qualified mechanic or alignment specialist is recommended to ensure accurate diagnosis and proper correction of axle hub-related alignment issues.

China Standard Wheel Loader Spare Parts Spindle Demultiplier Rear Bearing Cover Gasket Herth+Buss Jakoparts Wheel Bearing Kit Mapco Wheel Bearing Kit Left Rear Axle Wheel Hub   axle apiChina Standard Wheel Loader Spare Parts Spindle Demultiplier Rear Bearing Cover Gasket Herth+Buss Jakoparts Wheel Bearing Kit Mapco Wheel Bearing Kit Left Rear Axle Wheel Hub   axle api
editor by CX 2023-11-07

China Best Sales 513298 Wheel Hub and Bearing Assembly Front Axle Fit for 2008-13 CZPT Rogue/ 2014-15 Rogue Select/ 2007-12 Sentra 2.5L axle clamp tool

Product Description

 

Item 513298 Wheel Hub and Bearing Assembly Front Axle Fit for 2008-13 Nissan Rogue/ 2014-15 Rogue Select/ 2007-12 Sentra 2.5L
Manufacturer JB Auto Parts
Brand JBG
OEM NO. 45712BA60A  45712JG000
45712JG01A  45712JG01B
457122560R  45712JY00A
45712EN571
Ref. Number BR93571 513298 VKBA6996
Application Nissan Rogue 08-13;Rogue Select 14-15;Sentra 07-12

Welcome to J.B Auto Parts :

We are Professional manufacturer for wheel bearings and wheel hub bearings more than 10 years with OE quality grade. Our products range as follows

a. The DAC Series wheel bearings
b. The DU Series wheel bearings
c. The Second generation wheel Hub Units
d. The Third generation wheel Hub Units
 
We have passed the evaluation of ISO9001:2000 , TS16949 Quality management system certification
Why Choose J.B ?
OE Quality
All J.B wheel hub assemblies are made with precision using state-of-the-art technology and manufactured using a set of strict quality-control criteria.
Reliability
Our team upholds safety and reliability as the 2 most significant guidelines when manufacturing our products. Using high calibrating tools, we are CZPT to engineer our bearings with the utmost precision for long term functionality.
Cost Efficiency
Here at J.B we believe in providing our customers with quality products at an affordable price. Why waste time and money with an inferior product when you can take advantage of J.B cost -efficient bearings and seals?

 

After-sales Service: 50000 Km
Warranty: 2 Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P6
Certification: ISO9001, TS16949
Samples:
US$ 28/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

What is the primary function of an axle hub in a vehicle’s wheel assembly?

The primary function of an axle hub in a vehicle’s wheel assembly is to connect the wheel to the axle and provide a mounting point for the wheel bearings. Here’s a detailed explanation of the primary functions of an axle hub:

1. Wheel Mounting:

The axle hub serves as the component that connects the wheel to the vehicle’s axle. It is typically a cylindrical or disc-shaped structure located at the center of the wheel assembly. The hub contains bolt holes or studs that align with the corresponding holes or studs on the wheel, allowing for secure attachment and proper alignment of the wheel.

2. Bearing Support:

The axle hub provides a mounting point for the wheel bearings. Wheel bearings are crucial components that allow the wheel to rotate smoothly while supporting the weight of the vehicle. The hub contains a bearing race or races, which are machined surfaces that support the inner and outer wheel bearings. The bearings fit snugly into the hub and enable the wheel to rotate freely around the axle.

3. Load Transmission:

Another important function of the axle hub is to transmit the load from the wheel to the axle. As the vehicle moves, various forces act on the wheel, including the weight of the vehicle, acceleration and braking forces, and lateral forces during turns. The axle hub, along with the wheel bearings, helps distribute and transfer these forces from the wheel to the axle, allowing for smooth and controlled movement of the vehicle.

4. Hub Assembly Integration:

In many vehicles, the axle hub integrates with other components of the wheel assembly. For example, it may have provisions for attaching the brake rotor or drum, which are essential for the vehicle’s braking system. In vehicles with front-wheel drive or all-wheel drive, the axle hub may also incorporate features for connecting the CV (constant velocity) joint or driveshaft, allowing for power transmission to the wheels.

5. Wheel Alignment:

The axle hub plays a role in maintaining proper wheel alignment. The hub’s design and dimensions are critical in ensuring that the wheel is centered and aligned correctly with the vehicle’s suspension system. Proper wheel alignment is essential for optimal handling, tire wear, and overall vehicle performance.

In summary, the primary function of an axle hub in a vehicle’s wheel assembly is to connect the wheel to the axle and provide a mounting point for the wheel bearings. It facilitates the secure attachment of the wheel, supports the wheel bearings for smooth rotation, transmits loads from the wheel to the axle, integrates with other components of the wheel assembly, and contributes to proper wheel alignment. The axle hub is a critical component that enables safe and efficient operation of the vehicle’s wheels.

axle hub

Are there specific tools required for DIY axle hub replacement, and where can I find them?

When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:

  • Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
  • Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
  • Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
  • Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
  • Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
  • Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
  • Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.

To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.

It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.

In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.

axle hub

What is the importance of proper lubrication in maintaining a healthy axle hub?

Proper lubrication plays a crucial role in maintaining a healthy axle hub and ensuring its optimal performance and longevity. Here’s a detailed explanation:

An axle hub consists of several components, including wheel bearings, seals, and other internal parts. These components are subjected to high loads, friction, and heat generated during normal vehicle operation. Lubrication is essential to reduce friction, dissipate heat, and provide a protective barrier between moving parts. Here are the key reasons why proper lubrication is important for maintaining a healthy axle hub:

  • Reduced Friction: Adequate lubrication reduces friction between the moving parts of the axle hub. This minimizes wear and tear on the components and helps them operate smoothly. By reducing friction, proper lubrication helps prevent premature failure of critical parts, such as the wheel bearings.
  • Heat Dissipation: Axle hubs generate heat during operation due to the friction between the rotating components. The lubricant acts as a coolant, helping to dissipate heat and prevent excessive temperature buildup. Proper lubrication ensures that the heat is effectively managed, preventing overheating and potential damage to the axle hub.
  • Corrosion Prevention: Axle hubs are exposed to various environmental elements, including moisture, dirt, and road contaminants. These can lead to corrosion and rust, compromising the performance and structural integrity of the axle hub. Lubrication creates a protective barrier, preventing moisture and contaminants from reaching the critical components and reducing the risk of corrosion.
  • Seal Integrity: Proper lubrication helps maintain the integrity of the seals in the axle hub. Seals play a vital role in preventing the entry of contaminants and retaining the lubricant within the hub assembly. Insufficient lubrication can cause the seals to deteriorate prematurely, leading to lubricant leakage and potential damage to the axle hub.
  • Noise Reduction: Well-lubricated axle hubs operate quietly. The lubricant creates a cushioning effect, reducing noise and vibrations generated by the rotating components. This helps provide a comfortable and quiet driving experience.

It’s important to note that different axle hubs may require specific types of lubricants, such as grease or oil, depending on the design and manufacturer’s recommendations. Using the correct lubricant and following the specified lubrication intervals are crucial for maintaining a healthy axle hub. Over-lubrication or under-lubrication can lead to issues such as excess heat buildup, component damage, or inadequate protection.

Regular maintenance and inspection of the axle hub, including checking the lubricant level and quality, are essential. If any signs of contamination, leakage, or inadequate lubrication are observed, appropriate action should be taken, such as replenishing or replacing the lubricant and addressing any underlying issues.

In summary, proper lubrication is vital for maintaining a healthy axle hub. It reduces friction, dissipates heat, prevents corrosion, maintains seal integrity, and reduces noise. Adequate lubrication ensures smooth operation, prolongs the lifespan of the components, and helps prevent premature failures. Following the manufacturer’s recommendations regarding lubricant type and maintenance intervals is crucial for optimal axle hub performance and longevity.

China Best Sales 513298 Wheel Hub and Bearing Assembly Front Axle Fit for 2008-13 CZPT Rogue/ 2014-15 Rogue Select/ 2007-12 Sentra 2.5L   axle clamp toolChina Best Sales 513298 Wheel Hub and Bearing Assembly Front Axle Fit for 2008-13 CZPT Rogue/ 2014-15 Rogue Select/ 2007-12 Sentra 2.5L   axle clamp tool
editor by CX 2023-11-07

China OEM Rear Axle Wheel Hub 3748.95 Su001A1006 1401393280 56bwkh06j Vkba6577 for Citroen FIAT P-Eugeot 2007 Car Makes Wheel Bearing axle end caps

Product Description

Quick view:

Name Rear Axle Wheel Hub 3748.95
Bearings Material Steel GCr15, 65Mn, or 55
Application car makes CITROEN FIAT P-EUGEOT
Size OD: 128 mm
Weight 5.9 kg
With ABS with integrated ABS sensor
Hole 5
Brand SI, PPB, or customized
Packing Neutral, our brand packing or customized
OEM replacement Yes
Manufacture place ZHangZhoug, China
MOQ 1.2 VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

FAQ:
1.When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…

2. What’s your delivery way?
A: By sea, by air, by train, express as your need.

3. What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.

4. Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.

5. What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help customer to find out what’s the exactly problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
 

After-sales Service: Yes
Warranty: 12 Month
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P0
Certification: ISO9001, TS16949
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

Are there differences between front and rear axle hubs in terms of design and function?

Yes, there are differences between front and rear axle hubs in terms of design and function. Here’s a detailed explanation of these differences:

1. Design:

The design of front and rear axle hubs can vary based on the specific requirements of each axle position.

Front Axle Hubs: Front axle hubs are typically more complex in design compared to rear axle hubs. This is because front axle hubs are often responsible for connecting the wheels to the steering system and accommodating the front-wheel drive components. Front axle hubs may have provisions for attaching CV (constant velocity) joints, which are necessary for transmitting power from the engine to the front wheels in front-wheel drive or all-wheel drive vehicles. The design of front axle hubs may also incorporate features for connecting the brake rotor, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs generally have a simpler design compared to front axle hubs. They are primarily responsible for connecting the wheels to the rear axle shafts and supporting the wheel bearings. Rear axle hubs may not require the same level of complexity as front axle hubs since they do not need to accommodate steering components or transmit power from the engine. However, rear axle hubs still play a critical role in supporting the weight of the vehicle, transmitting driving forces, and integrating with the brake system.

2. Function:

The function of front and rear axle hubs differs based on the specific demands placed on each axle position.

Front Axle Hubs: Front axle hubs have the following primary functions:

  • Connect the wheel to the steering system, allowing for controlled steering and maneuverability.
  • Support the wheel bearings to facilitate smooth wheel rotation and weight distribution.
  • Integrate with the front-wheel drive components, such as CV joints, to transmit power from the engine to the front wheels.
  • Provide a mounting point for the brake rotor or drum, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs have the following primary functions:

  • Connect the wheel to the rear axle shaft, facilitating power transmission and driving forces.
  • Support the wheel bearings to enable smooth wheel rotation and weight distribution.
  • Integrate with the brake system, providing a mounting point for the brake rotor or drum for braking performance.

3. Load Distribution:

Front and rear axle hubs also differ in terms of load distribution.

Front Axle Hubs: Front axle hubs bear the weight of the engine, transmission, and other front-end components. They also handle a significant portion of the vehicle’s braking forces during deceleration. As a result, front axle hubs need to be designed to handle higher loads and provide sufficient strength and durability.

Rear Axle Hubs: Rear axle hubs primarily bear the weight of the vehicle’s rear end and support the differential and rear axle shafts. The braking forces on the rear axle hubs are typically lower compared to the front axle hubs. However, they still need to be robust enough to handle the forces generated during acceleration, deceleration, and cornering.

In summary, there are differences between front and rear axle hubs in terms of design and function. Front axle hubs are typically more complex and accommodate steering components and front-wheel drive systems, while rear axle hubs have a simpler design focused on supporting the rear axle and integrating with the brake system. Understanding these differences is important for proper maintenance and repair of the axle hubs in a vehicle.

axle hub

Are there aftermarket axle hubs available with enhanced durability or performance features?

Yes, there are aftermarket axle hubs available with enhanced durability or performance features. Aftermarket parts are components that are produced by manufacturers other than the original equipment manufacturer (OEM) of the vehicle. These aftermarket axle hubs are designed to provide improved durability, performance, or other specialized features compared to the stock OEM axle hubs. Here’s a detailed explanation:

  • Durability enhancements: Aftermarket axle hubs may incorporate design improvements or use materials that enhance their durability and longevity. These enhancements can include reinforced bearing housings, stronger wheel studs, improved seals and gaskets, or upgraded materials that better withstand heavy loads, extreme temperatures, or harsh driving conditions. The goal is to provide a more robust and long-lasting axle hub solution.
  • Performance features: Some aftermarket axle hubs are designed to offer enhanced performance characteristics. These performance features can include better heat dissipation properties, reduced rotational friction, or improved weight distribution. Performance-oriented axle hubs may also be engineered to provide more precise wheel alignment, improved handling, or reduced unsprung weight, which can contribute to overall vehicle performance.
  • Specialized applications: In addition to durability and performance enhancements, aftermarket axle hubs may be available for specialized applications. For example, there are aftermarket axle hubs designed specifically for off-road vehicles, heavy-duty towing, or high-performance sports cars. These specialized axle hubs may have features such as increased load-bearing capacity, improved water and debris resistance, or compatibility with upgraded braking systems.
  • Brands and manufacturers: The aftermarket industry offers a wide range of options from various brands and manufacturers. Some aftermarket companies specialize in producing high-quality replacement parts, including axle hubs, that are designed to meet or exceed OEM standards. These aftermarket brands may have a reputation for providing durable and high-performance products, and they often offer warranties to back up their claims.
  • Research and compatibility: When considering aftermarket axle hubs with enhanced durability or performance features, it is essential to conduct thorough research. Look for reputable aftermarket brands known for their quality and reliability. Additionally, ensure compatibility with your specific vehicle make, model, and year. Most aftermarket manufacturers provide compatibility information or have online resources to help you select the correct axle hub for your vehicle.

It’s worth noting that while aftermarket axle hubs can offer enhanced durability or performance features, not all aftermarket parts are created equal. The quality and performance of aftermarket axle hubs can vary depending on the manufacturer and brand. It’s advisable to choose reputable aftermarket brands that have a track record of producing reliable and high-quality components. Consulting with automotive professionals or enthusiasts and reading customer reviews can also provide valuable insights when selecting aftermarket axle hubs.

In summary, aftermarket axle hubs with enhanced durability or performance features are available. These aftermarket options may incorporate design improvements, specialized materials, or performance-oriented features to offer increased durability, improved performance, or compatibility with specialized applications. Conducting thorough research and selecting reputable aftermarket brands can help ensure the quality and compatibility of the aftermarket axle hubs for your vehicle.

axle hub

What are the torque specifications for securing an axle hub to the vehicle?

The torque specifications for securing an axle hub to the vehicle may vary depending on the specific make, model, and year of the vehicle. It is crucial to consult the manufacturer’s service manual or appropriate technical resources for the accurate torque specifications for your particular vehicle. Here’s a detailed explanation:

  • Manufacturer’s Service Manual: The manufacturer’s service manual is the most reliable and authoritative source for torque specifications. It provides detailed information specific to your vehicle, including the recommended torque values for various components, such as the axle hub. The service manual may specify different torque values for different vehicle models or configurations. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
  • Technical Resources: In addition to the manufacturer’s service manual, there are other technical resources available that provide torque specifications. These resources may include specialized automotive repair guides, online databases, or torque specification charts. Reputable automotive websites, professional repair manuals, or automotive forums dedicated to your vehicle’s make or model can be valuable sources for finding accurate torque specifications.
  • Online Databases: Some websites offer online databases or torque specification tools that allow you to search for specific torque values based on your vehicle’s make, model, and year. These databases compile torque specifications from various sources and provide a convenient way to access the required information. However, it’s important to verify the accuracy and reliability of the source before relying on the provided torque values.
  • Manufacturer Recommendations: In certain cases, the manufacturer may provide torque specifications on the packaging or documentation that accompanies the replacement axle hub. If you are using an OEM (Original Equipment Manufacturer) or aftermarket axle hub, it is advisable to check any provided documentation for torque recommendations specific to that particular product.

Regardless of the source you use to obtain torque specifications, it is essential to follow the recommended values precisely. Torque specifications are specified to ensure proper tightening and secure attachment of the axle hub to the vehicle. Over-tightening or under-tightening can lead to issues such as damage to components, improper seating, or premature wear. It is recommended to use a reliable torque wrench to achieve the specified torque values accurately.

In summary, the torque specifications for securing an axle hub to the vehicle depend on the specific make, model, and year of the vehicle. The manufacturer’s service manual, technical resources, online databases, and manufacturer recommendations are valuable sources to obtain accurate torque specifications. It is crucial to follow the recommended torque values precisely to ensure proper installation and avoid potential issues.

China OEM Rear Axle Wheel Hub 3748.95 Su001A1006 1401393280 56bwkh06j Vkba6577 for Citroen FIAT P-Eugeot 2007 Car Makes Wheel Bearing   axle end capsChina OEM Rear Axle Wheel Hub 3748.95 Su001A1006 1401393280 56bwkh06j Vkba6577 for Citroen FIAT P-Eugeot 2007 Car Makes Wheel Bearing   axle end caps
editor by CX 2023-11-06

China Hot selling Auto Car Parts Center Bearing 07-09 Audi Q7 3.6L Rear Drive Shaft 7L8521102f

Product Description

 

HangZhou Yuantuo Auto Parts Manufacturing Co., Ltd was founded in 1990,which is a company specialized in production and sales of rubber parts such as center support bearing,wiper blade and torque rod bush in China.It is located in the beautiful and rich city HangZhou with a very convenient transportation near ZheJiang Kowloon Railway at the east and near National Road 106 and 308.And it covers an area of 30,000 square meters.

It continually introduces new advanced equipment and production process to enhance core competence and reduce production cost. Our products cover more than 100 models,We all along stick to the belief of quality first and customer orientation. Now our products have been exported to many countries, such as USA, Russia, Mexico, Italy, Germany, Iran, Egypt, Dubai, Malaysia, Brazil, Peru, Nigeria, Pakistan, India etc. Strict quality control and perfect after-sales service make our products widely welcomed in domestic and overseas markets.

YTK as a global manufacture specialized in auto wiper blade,our company has been ahead of the industry advanced level in rubber srtip technology after more tan 10 years of continuous development and technolgical inovation.And we are always pursing “cost-effective product ” and provide the cutstomers with safe and high quality wiper as the core idea of our company.We laid a CZPT foundation for cooperation by continuous innowation of patend products.Our products cover a compleat range of models and non-standard products could be cus-tomized.Our company always sticks to the service  objective of keeping the customers satisfied .Hope that YTK could have common development and share succession to create a beautiful future together with you .

 

 

 

YOU COULD GET (Cooperation with us):

1 More than 360 types of models,expand your product catalog.
2 More better price than the trading company.
3 Support mould development help you CZPT the market opportunity.
4 Stock a lot of product mold, save the cost of developing mold for you.
5 Fast delivery!
6. Production capacity: 60,000-80,000 PCS/ month.

FAQ

 

Q1. What is your terms of packing?

      Generally, we pack our goods in neutral  boxes and brown cartons or as your demand.
       If you have legally registered patent,we can pack the goods in your branded boxes after getting your authorization letters.

 

Q2. What is your terms of delivery?

       EXW, FOB, CIF, CFR

 

Q3. How about your delivery time?

      Generally, it will take 10 to 30 days after receiving your advance payment.
      The specific delivery time depends on the items and the quantity of your order.

Condition: New
Color: Black
Certification: ISO
Material: Rubber
Transport Package: as Your Demand
Trademark: YTK
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What maintenance practices are crucial for prolonging the lifespan of drive shafts?

To prolong the lifespan of drive shafts and ensure their optimal performance, several maintenance practices are crucial. Regular maintenance helps identify and address potential issues before they escalate, reduces wear and tear, and ensures the drive shaft operates smoothly and efficiently. Here are some essential maintenance practices for prolonging the lifespan of drive shafts:

1. Regular Inspection:

Performing regular inspections is vital for detecting any signs of wear, damage, or misalignment. Inspect the drive shaft visually, looking for cracks, dents, or any signs of excessive wear on the shaft itself and its associated components such as joints, yokes, and splines. Check for any signs of lubrication leaks or contamination. Additionally, inspect the fasteners and mounting points to ensure they are secure. Early detection of any issues allows for timely repairs or replacements, preventing further damage to the drive shaft.

2. Lubrication:

Proper lubrication is essential for the smooth operation and longevity of drive shafts. Lubricate the joints, such as universal joints or constant velocity joints, as recommended by the manufacturer. Lubrication reduces friction, minimizes wear, and helps dissipate heat generated during operation. Use the appropriate lubricant specified for the specific drive shaft and application, considering factors such as temperature, load, and operating conditions. Regularly check the lubrication levels and replenish as necessary to ensure optimal performance and prevent premature failure.

3. Balancing and Alignment:

Maintaining proper balancing and alignment is crucial for the lifespan of drive shafts. Imbalances or misalignments can lead to vibrations, accelerated wear, and potential failure. If vibrations or unusual noises are detected during operation, it is important to address them promptly. Perform balancing procedures as necessary, including dynamic balancing, to ensure even weight distribution along the drive shaft. Additionally, verify that the drive shaft is correctly aligned with the engine or power source and the driven components. Misalignment can cause excessive stress on the drive shaft, leading to premature failure.

4. Protective Coatings:

Applying protective coatings can help prolong the lifespan of drive shafts, particularly in applications exposed to harsh environments or corrosive substances. Consider using coatings such as zinc plating, powder coating, or specialized corrosion-resistant coatings to enhance the drive shaft’s resistance to corrosion, rust, and chemical damage. Regularly inspect the coating for any signs of degradation or damage, and reapply or repair as necessary to maintain the protective barrier.

5. Torque and Fastener Checks:

Ensure that the drive shaft’s fasteners, such as bolts, nuts, or clamps, are properly torqued and secured according to the manufacturer’s specifications. Loose or improperly tightened fasteners can lead to excessive vibrations, misalignment, or even detachment of the drive shaft. Periodically check and retighten the fasteners as recommended or after any maintenance or repair procedures. Additionally, monitor the torque levels during operation to ensure they remain within the specified range, as excessive torque can strain the drive shaft and lead to premature failure.

6. Environmental Protection:

Protecting the drive shaft from environmental factors can significantly extend its lifespan. In applications exposed to extreme temperatures, moisture, chemicals, or abrasive substances, take appropriate measures to shield the drive shaft. This may include using protective covers, seals, or guards to prevent contaminants from entering and causing damage. Regular cleaning of the drive shaft, especially in dirty or corrosive environments, can also help remove debris and prevent buildup that could compromise its performance and longevity.

7. Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance practices specific to the drive shaft model and application. The manufacturer’s instructions may include specific intervals for inspections, lubrication, balancing, or other maintenance tasks. Adhering to these guidelines ensures that the drive shaft is properly maintained and serviced, maximizing its lifespan and minimizing the risk of unexpected failures.

By implementing these maintenance practices, drive shafts can operate reliably, maintain efficient power transmission, and have an extended service life, ultimately reducing downtime and ensuring optimal performance in various applications.

pto shaft

How do drive shafts contribute to the efficiency of vehicle propulsion and power transmission?

Drive shafts play a crucial role in the efficiency of vehicle propulsion and power transmission systems. They are responsible for transferring power from the engine or power source to the wheels or driven components. Here’s a detailed explanation of how drive shafts contribute to the efficiency of vehicle propulsion and power transmission:

1. Power Transfer:

Drive shafts transmit power from the engine or power source to the wheels or driven components. By efficiently transferring rotational energy, drive shafts enable the vehicle to move forward or drive the machinery. The design and construction of drive shafts ensure minimal power loss during the transfer process, maximizing the efficiency of power transmission.

2. Torque Conversion:

Drive shafts can convert torque from the engine or power source to the wheels or driven components. Torque conversion is necessary to match the power characteristics of the engine with the requirements of the vehicle or machinery. Drive shafts with appropriate torque conversion capabilities ensure that the power delivered to the wheels is optimized for efficient propulsion and performance.

3. Constant Velocity (CV) Joints:

Many drive shafts incorporate Constant Velocity (CV) joints, which help maintain a constant speed and efficient power transmission, even when the driving and driven components are at different angles. CV joints allow for smooth power transfer and minimize vibration or power losses that may occur due to changing operating angles. By maintaining constant velocity, drive shafts contribute to efficient power transmission and improved overall vehicle performance.

4. Lightweight Construction:

Efficient drive shafts are often designed with lightweight materials, such as aluminum or composite materials. Lightweight construction reduces the rotational mass of the drive shaft, which results in lower inertia and improved efficiency. Reduced rotational mass enables the engine to accelerate and decelerate more quickly, allowing for better fuel efficiency and overall vehicle performance.

5. Minimized Friction:

Efficient drive shafts are engineered to minimize frictional losses during power transmission. They incorporate features such as high-quality bearings, low-friction seals, and proper lubrication to reduce energy losses caused by friction. By minimizing friction, drive shafts enhance power transmission efficiency and maximize the available power for propulsion or operating other machinery.

6. Balanced and Vibration-Free Operation:

Drive shafts undergo dynamic balancing during the manufacturing process to ensure smooth and vibration-free operation. Imbalances in the drive shaft can lead to power losses, increased wear, and vibrations that reduce overall efficiency. By balancing the drive shaft, it can spin evenly, minimizing vibrations and optimizing power transmission efficiency.

7. Maintenance and Regular Inspection:

Proper maintenance and regular inspection of drive shafts are essential for maintaining their efficiency. Regular lubrication, inspection of joints and components, and prompt repair or replacement of worn or damaged parts help ensure optimal power transmission efficiency. Well-maintained drive shafts operate with minimal friction, reduced power losses, and improved overall efficiency.

8. Integration with Efficient Transmission Systems:

Drive shafts work in conjunction with efficient transmission systems, such as manual, automatic, or continuously variable transmissions. These transmissions help optimize power delivery and gear ratios based on driving conditions and vehicle speed. By integrating with efficient transmission systems, drive shafts contribute to the overall efficiency of the vehicle propulsion and power transmission system.

9. Aerodynamic Considerations:

In some cases, drive shafts are designed with aerodynamic considerations in mind. Streamlined drive shafts, often used in high-performance or electric vehicles, minimize drag and air resistance to improve overall vehicle efficiency. By reducing aerodynamic drag, drive shafts contribute to the efficient propulsion and power transmission of the vehicle.

10. Optimized Length and Design:

Drive shafts are designed to have optimal lengths and designs to minimize energy losses. Excessive drive shaft length or improper design can introduce additional rotational mass, increase bending stresses, and result in energy losses. By optimizing the length and design, drive shafts maximize power transmission efficiency and contribute to improved overall vehicle efficiency.

Overall, drive shafts contribute to the efficiency of vehicle propulsion and power transmission through effective power transfer, torque conversion, utilization of CV joints, lightweight construction, minimized friction, balanced operation, regular maintenance, integration with efficient transmission systems, aerodynamic considerations, and optimized length and design. By ensuring efficient power delivery and minimizing energy losses, drive shafts play a significant role in enhancing the overall efficiency and performance of vehicles and machinery.

pto shaft

How do drive shafts contribute to transferring rotational power in various applications?

Drive shafts play a crucial role in transferring rotational power from the engine or power source to the wheels or driven components in various applications. Whether it’s in vehicles or machinery, drive shafts enable efficient power transmission and facilitate the functioning of different systems. Here’s a detailed explanation of how drive shafts contribute to transferring rotational power:

1. Vehicle Applications:

In vehicles, drive shafts are responsible for transmitting rotational power from the engine to the wheels, enabling the vehicle to move. The drive shaft connects the gearbox or transmission output shaft to the differential, which further distributes the power to the wheels. As the engine generates torque, it is transferred through the drive shaft to the wheels, propelling the vehicle forward. This power transfer allows the vehicle to accelerate, maintain speed, and overcome resistance, such as friction and inclines.

2. Machinery Applications:

In machinery, drive shafts are utilized to transfer rotational power from the engine or motor to various driven components. For example, in industrial machinery, drive shafts may be used to transmit power to pumps, generators, conveyors, or other mechanical systems. In agricultural machinery, drive shafts are commonly employed to connect the power source to equipment such as harvesters, balers, or irrigation systems. Drive shafts enable these machines to perform their intended functions by delivering rotational power to the necessary components.

3. Power Transmission:

Drive shafts are designed to transmit rotational power efficiently and reliably. They are capable of transferring substantial amounts of torque from the engine to the wheels or driven components. The torque generated by the engine is transmitted through the drive shaft without significant power losses. By maintaining a rigid connection between the engine and the driven components, drive shafts ensure that the power produced by the engine is effectively utilized in performing useful work.

4. Flexible Coupling:

One of the key functions of drive shafts is to provide a flexible coupling between the engine/transmission and the wheels or driven components. This flexibility allows the drive shaft to accommodate angular movement and compensate for misalignment between the engine and the driven system. In vehicles, as the suspension system moves or the wheels encounter uneven terrain, the drive shaft adjusts its length and angle to maintain a constant power transfer. This flexibility helps prevent excessive stress on the drivetrain components and ensures smooth power transmission.

5. Torque and Speed Transmission:

Drive shafts are responsible for transmitting both torque and rotational speed. Torque is the rotational force generated by the engine or power source, while rotational speed is the number of revolutions per minute (RPM). Drive shafts must be capable of handling the torque requirements of the application without excessive twisting or bending. Additionally, they need to maintain the desired rotational speed to ensure the proper functioning of the driven components. Proper design, material selection, and balancing of the drive shafts contribute to efficient torque and speed transmission.

6. Length and Balance:

The length and balance of drive shafts are critical factors in their performance. The length of the drive shaft is determined by the distance between the engine or power source and the driven components. It should be appropriately sized to avoid excessive vibrations or bending. Drive shafts are carefully balanced to minimize vibrations and rotational imbalances, which can affect the overall performance, comfort, and longevity of the drivetrain system.

7. Safety and Maintenance:

Drive shafts require proper safety measures and regular maintenance. In vehicles, drive shafts are often enclosed within a protective tube or housing to prevent contact with moving parts, reducing the risk of injury. Safety shields or guards may also be installed around exposed drive shafts in machinery to protect operators from potential hazards. Regular maintenance includes inspecting the drive shaft for wear, damage, or misalignment, and ensuring proper lubrication of the U-joints. These measures help prevent failures, ensure optimal performance, and extend the service life of the drive shaft.

In summary, drive shafts play a vital role in transferring rotational power in various applications. Whether in vehicles or machinery, drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. They provide a flexible coupling, handle torque and speed transmission, accommodate angular movement, and contribute to the safety and maintenance of the system. By effectively transferring rotational power, drive shafts facilitate the functioning and performance of vehicles and machinery in numerous industries.

China Hot selling Auto Car Parts Center Bearing 07-09 Audi Q7 3.6L Rear Drive Shaft 7L8521102f  China Hot selling Auto Car Parts Center Bearing 07-09 Audi Q7 3.6L Rear Drive Shaft 7L8521102f
editor by CX 2023-09-13

China Front Rear Axle Without ABS 43bwd06 43bwd03 45bwd06 45bwc03 45bwd07b NSK NTN Koyo NACHI IKO Wheel Hub Bearing axle and wheels

Product Description

Front Rear Axle without ABS 43BWD06 43BWD03 45BWD06 45BWC03 45BWD07B CZPT CZPT CZPT Wheel Hub Bearing  

wheel hub bearings are components used in automobile axles to support load and provide precise guidance for the rotation of the hub. They bear both axial load and radial load, and are an important part of automobile load and rotation.
 

A wide range of applications:

• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler.

 

Our Bearing Advantage:

1.Free Sample bearing

2.ISO Standard

3.Bearing Small order accepted

4.In Stock bearing

5.OEM bearing service

6.Professional:16 years manufacture bearing

7.Customized bearing, Customer’s bearing drawing or samples accepted

8.Competitive price bearing

9.TT Payment or Western Union or Trade Assurance Order
 

Product Name
Wheel hub bearing 
Brand Name NTN CZPT CZPT CZPT Timken
Seals Type OPEN/2Z/2RS/Z/RS
Material Chrome Steel ,Stainless steel,Ceramic,Nylon
Clearance C0,C2,C3,C4,C5
Precision Grade P0,P6,P5,P4,P2 43(45) 82 37 37 0.76
DAC367629.2/27 36 76 29.2 27 0.55 DAC4482.50037 44 82.5 37 37 0.73
DAC3676571/27 36 76 29 27 0.55 DAC44840042/40 44 84 42 40 0.92
DAC37680034 37 68 34 34 0.52 DAC45770050/45 45 77 50 45  
DAC37720033 37 72 33 33 0.58 DAC45800045 45 80 45 45 0.78
DAC37720037 37 72 37 37 0.59 DAC45830039 45 83 39 39 0.83
DAC37725717 37 72.02 37 37 0.59 DAC45840039 45 84 39 39 0.85
DAC3772571 37 72.04 37 37 0.59 DAC45840041/39 45 84 41 39 0.8
DAC37740037 37 74 37 37 0.61 DAC45840042/40 45 84 42 40 0.94
DAC37740045 37 74 45 45 0.79 DAC45840043 45 84 43 43 0.96
DAC38640032/29 38 64 32 39   DAC45840045 45 84 45 45 1
DAC38640036/33 38 64 36 33   DAC45840053 45 84 53 53  
DAC38640036/33 38 64 36 33   DAC4585571 45 85 23 23 0.54
DAC38650052/48 38 65 52 48   DAC458500302 45 85 30.2 30.2 0.63
DAC38700037 38 70 37 37 0.56 DAC45850045 45 85 45 45 0.96
DAC38700038 38 70 38 38 0.57 DAC45850047 45 85 47 47 0.98
DAC38710033/30 38 71 33 30 0.5 DAC45850051 45 85 51 51 1.02
DAC38710039 38 71 39 39 0.58 DAC45870041/39 45 87 41 39 0.92
DAC38715713/30 38 71.02 33 30 0.5 DAC45880039 45 88 39 39 0.9
DAC38720036/33 38 72 36 33 0.56 DAC45900054/51 45 90 54 51  
DAC38725716/33 38 72.02 36 33 0.56 DAC46780049 46 78 49 49  
DAC38720034 38 72 34 34 0.55 DAC46800043/40 46 80 43 40  
DAC38720040 38 72 40 40 0.63 DAC47810053 47 81 53 53 1.02
DAC38730040 38 73 40 40 0.67 DAC47850045 47 85 45 45 0.85
DAC38740036 38 74 36 36 0.62 DAC47880055 47 88 55 55  
DAC38740036/33 38 74 36 33 0.61 DAC47880055 47 88 55 55  
DAC38745716/33 38 74.02 36 33 0.59 DAC47880057.4 47 88 57.4 57.4  
DAC38740040 38 74 40 40 0.67 DAC48860042/40 48 86 42 40 0.96
DAC38740050 38 74 50 50 0.85 DAC48890044 48 89 44 44 1.07
DAC38740450 38 74.04 50 50 0.85 DAC48890044/42 48 89 44 42 1.07
DAC38760043/40 38 76 43 40   DAC48900042 48 90 42 42 1.09
DAC38760043 68 76 43 43   DAC49840042/40 49 84 42 40 0.99
DAC3885716/33 38 80.02 36 33   DAC49840043 49 84 43 43  
DAC39/41750037 39/41 75 37 37 0.62 DAC49840048 49 84 48 48 1.06
DAC39680037 39 68 37 37 0.48 DAC49840050 49 84 50 50 1.08
DAC39680637 39 68.06 37 37 0.48 DAC49880046 49 88 46 46 1.05
DAC3968571 39 68.07 37 37 0.48 DAC49900045 49 90 45 45 1.08
DAC39720037 39 72 37 37 0.6 DAC50900040 50 90 40 40  
DAC39720037 39 72 37 37 0.6 DAC51890044/42 51 89 44 42  
DAC39720637 39 72.06 37 37 0.6 DAC51910044 51 91 44 44  
DAC39720040 39 72 40 40 0.61 DAC51960050 51 96 50 50  
DAC39740036 39 74 36 36 0.54 DAC52910040 52 91 40 40  
DAC39740036/34 39 74 36 34 0.52 DAC54900050 54 90 50 50  
DAC39740039 39 74 39 39 0.66 DAC54920050 54 92 50 50  
DAC39.1740036/34 39.1 74 36 34 0.66 DAC54960051 54 96 51 51  
DAC40700043 40 70 43 43 0.63 DAC55900060 55 90 60 60  

Q: Are you a trading company or a manufacturer ?
A: We are a manufacturer more than 16 years with professional skill.

Q:Do you provide samples ? Are they free or extra ?
A:Yes, we could offer the sample, while could you pay for the freight?

Q:What kind of freight will you use?
A:Shipment, FedEx, TNT, DHL, UPS and EMS etc.

Q:Could you make bearings with our OEM logo,color and packing?
A: Of course. Please inform us your brand logo,color and packing.

Q: How long is your delivery time?
A: Generally it will be 3-7 days if the goods are in stock; while it will be 15-30 days if the goods are not in stock, which is according to your quantity.

Q: Will you check these products before shipment?
A: Yes, products will be strictly inspected by our own professional QC Process System before shipment.

Q: What’s the Payment Terms ?
A: Usually we accept T/T ,western union ,and order online.

If you want to know more details, please contact us.

Type: Wheel Hub Bearing
Material: Chrome Steel
Certification: ISO9001, ISO9006
ABS: With ABS
Car Make: Toyota
Quality Level: P0 P6 P5 P4 P2

###

Samples:
US$ 3/Set
1 Set(Min.Order)

|
Request Sample

###

Customization:

###

Product Name
Wheel hub bearing 

###

Model Boundary Dimensions (mm)  Mass  Model Boundary Dimensions (mm)  Mass 
d D B C kg d D B C kg
DAC20420030/29 20 42 30 29 0.23 DAC40720037 40 72 37 37 0.55
DAC255200206 25 52 20.6 20.6 0.19 DAC40720637 40 72.06 37 37 0.55
DAC25520037 25 52 37 37 0.31 DAC40730034 40 73 34 34 0.56
DAC25520040 25 52 40 40 0.35 DAC40740036 40 74 36 36 0.62
DAC25520042 25 52 42 42 0.36 DAC40740036/34 40 74 36 34 0.58
DAC25520043 25 52 43 43 0.36 DAC40740040 40 74 40 40 0.67
DAC25550043 25 55 43 43 0.44 DAC40740042 40 74 42 42 0.7
DAC25550045 25 55 45 45 0.46 DAC40750037 40 75 37 37 0.62
DAC25550048 25 55 48 48 0.48 DAC39(41)750037 39(41) 75 37 37 0.62
DAC25560032 25 56 32 32 0.34 DAC40750039 40 75 39 39 0.64
DAC25600045 25 60 45 45 0.48 DAC40750050 40 75 50 50 0.68
DAC25620048 25 62 48 48 0.5 DAC40760033/28 40 76 33 28 0.54
DAC27520042 27 52 42 42 0.33 DAC40760033 40 76 33 33 0.52
DAC27520043 27 52 43 43 0.33 DAC40760036 40 76 36 36 0.58
DAC27520045/43 27 52 45 43 0.34 DAC40760038 40 76 38 38 0.6
DAC27530043 27 53 43 43 0.34 DAC40760040/38 40 76 40 38 0.52
DAC27600050 27 60 50 50 0.56 DAC40760041/38 40 76 41 38 0.52
DAC28580042 28 58 42 42 0.47 DAC40760441/38 40 76.04 41 38 0.7
DAC28580044 28 58 44 44 0.48 DAC40800030.2 40 80 30.2 30.2 0.65
DAC28610042 28 61 42 42 0.56 DAC40800030.2 40 80 30.2 30.2 0.65
DAC29530037 29 53 37 37 0.35 DAC40800031 40 80 31 31 0.65
DAC30550026 30 55 26 26 0.26 DAC40800036/34 40 80 36 34 0.74
DAC30550032 30 55 32 32 0.28 DAC40800038 40 80 38 38 0.8
DAC30580042 30 58 42 42 0.4 DAC40800038.1 40 80 38.1 38.1 0.8
DAC30600037 30 60 37 37 0.42 DAC40800040 40 80 40 40 0.86
DAC30600337 30 60.03 37 37 0.42 DAC40800045/44 40 80 45 44 0.95
DAC30620038 30 62 38 38 0.52 DAC40820040 40 82 40 40 0.88
DAC30620048 30 62 48 48 0.56 DAC408402538 40 84.02 53.8 53.8 0.97
DAC30630042 30 63 42 42 0.57 DAC401080032/17 40 108 32 17 1.04
DAC30640042 30 64 42 42 0.49 DAC41680040/35 41 68 40 35 1.06
DAC30680045 30 68 45 45 0.58 DAC42720038 42 72 38 38 0.54
DAC32580065/57 32 58 65 57   DAC42720038/35 42 72 38 35 0.52
DAC32670040 32 67 40 40 0.61 DAC42750037 42 75 37 37 0.6
DAC32700038 32 70 38 38 0.62 DAC42760033 42 76 33 33 0.65
DAC32720038 32 72 38 38 0.64 DAC42760038/35 42 76 38 35 0.65
DAC32720345 32 72.03 45 45 0.6 DAC42760039 42 76 39 39 0.62
DAC34620037 34 62 37 37 0.41 DAC42760040 42 76 40 40 0.68
DAC34640034 34 64 34 34 0.43 DAC42760040/37 42 76 40 37 0.66
DAC34640037 34 64 37 37 0.47 DAC42770039 42 77 39 39  
DAC34660037 34 66 37 37 0.5 DAC42780036/34 42 78 36 34  
DAC34670037 34 67 37 37 0.5 DAC42780040 42 78 40 40  
DAC35618031 35 61.8 31 31 0.42 DAC42780041/38 42 78 41 38 0.75
DAC35618040 35 61.8 40 40 0.43 DAC42780045 42 78 45 45  
DAC35620031 35 62 31 31 0.35 DAC42800036 42 80 36 36 0.83
DAC35620040 35 62 40 40 0.43 DAC42800036/34 42 80 36 34 0.81
DAC35640037 35 64 37 37 0.46 DAC42800037 42 80 37 37 0.68
DAC35650035 35 65 35 35 0.4 DAC42800038 42 80 38 38  
DAC35650037 35 65 37 37 0.51 DAC42800042 42 80 42 42 0.82
DAC35650045 35 65 45 45 0.6 DAC42800045 42 80 45 45 0.86
DAC35660032 35 66 32 32 0.42 DAC42800342 42 80 42 42 0.82
DAC35660033 35 66 33 33 0.43 DAC42820036 42 80 36 36 0.77
DAC35660037 35 66 37 37 0.48 DAC42820036 42 80 36 36 0.8
DAC35670042 35 67 42 42 0.6 DAC42820037 42 82 37 37 0.79
DAC35680233/30 35 68.02 33 30 0.47 DAC42840034 42 84 34 34 0.75
DAC35680037 35 68 37 37 0.52 DAC42840036 42 84 36 36 0.84
DAC35680042 35 68 42 42 0.62 DAC42840039 42 84 39 39 0.93
DAC35680039/36 35 68 39 36 0.56 DAC42840236 42 84.02 36 36 0.84
DAC35720027 35 72 27 27 0.48 DAC43/45820037 43/45 82 37 37 0.76
DAC35720028 35 72 28 28 0.49 DAC43760043/40 43 76 43 40 0.72
DAC35720228 35 72.02 28 28 0.49 DAC43760043 43 76 43 43 0.73
DAC35720233/31 35 72.02 33 31 0.54 DAC43770042/38 43 77 42 38  
DAC35720033 35 72 33 33 0.58 DAC437745.5/41.5 43 77 45.5 41.5  
DAC35720433 35 72.04 33 33 0.58 DAC43780044 43 78 44 44  
DAC35720434 35 72.04 34 34 0.58 DAC43780045/44 43 78 45 44  
DAC35720034 35 72 34 34 0.58 DAC43790041/38 43 79 41 38 0.77
DAC35720037 35 72 37 37 0.58 DAC43790045 43 78 45 45 0.84
DAC35720042 35 72 42 42 0.62 DAC43800038 43 80 38 38 0.75
DAC35720054 35 72 54 54 0.95 DAC43800040 43 80 40 40  
DAC35720042 35 77 42 42 0.7 DAC43800045 43 80 45 45 0.91
DAC35720042 35 77 42 42 0.7 DAC43800050/45 43 80 50 45 0.91
DAC35800047 35 80 47 47 0.7 DAC43820045 43 82 45 45 0.96
DAC36680033 36 68 33 33 0.47 DAC43(45)820037 43(45) 82 37 37 0.76
DAC367629.2/27 36 76 29.2 27 0.55 DAC4482.50037 44 82.5 37 37 0.73
DAC36760029/27 36 76 29 27 0.55 DAC44840042/40 44 84 42 40 0.92
DAC37680034 37 68 34 34 0.52 DAC45770050/45 45 77 50 45  
DAC37720033 37 72 33 33 0.58 DAC45800045 45 80 45 45 0.78
DAC37720037 37 72 37 37 0.59 DAC45830039 45 83 39 39 0.83
DAC37720237 37 72.02 37 37 0.59 DAC45840039 45 84 39 39 0.85
DAC37720437 37 72.04 37 37 0.59 DAC45840041/39 45 84 41 39 0.8
DAC37740037 37 74 37 37 0.61 DAC45840042/40 45 84 42 40 0.94
DAC37740045 37 74 45 45 0.79 DAC45840043 45 84 43 43 0.96
DAC38640032/29 38 64 32 39   DAC45840045 45 84 45 45 1
DAC38640036/33 38 64 36 33   DAC45840053 45 84 53 53  
DAC38640036/33 38 64 36 33   DAC45850023 45 85 23 23 0.54
DAC38650052/48 38 65 52 48   DAC458500302 45 85 30.2 30.2 0.63
DAC38700037 38 70 37 37 0.56 DAC45850045 45 85 45 45 0.96
DAC38700038 38 70 38 38 0.57 DAC45850047 45 85 47 47 0.98
DAC38710033/30 38 71 33 30 0.5 DAC45850051 45 85 51 51 1.02
DAC38710039 38 71 39 39 0.58 DAC45870041/39 45 87 41 39 0.92
DAC38710233/30 38 71.02 33 30 0.5 DAC45880039 45 88 39 39 0.9
DAC38720036/33 38 72 36 33 0.56 DAC45900054/51 45 90 54 51  
DAC38720236/33 38 72.02 36 33 0.56 DAC46780049 46 78 49 49  
DAC38720034 38 72 34 34 0.55 DAC46800043/40 46 80 43 40  
DAC38720040 38 72 40 40 0.63 DAC47810053 47 81 53 53 1.02
DAC38730040 38 73 40 40 0.67 DAC47850045 47 85 45 45 0.85
DAC38740036 38 74 36 36 0.62 DAC47880055 47 88 55 55  
DAC38740036/33 38 74 36 33 0.61 DAC47880055 47 88 55 55  
DAC38740236/33 38 74.02 36 33 0.59 DAC47880057.4 47 88 57.4 57.4  
DAC38740040 38 74 40 40 0.67 DAC48860042/40 48 86 42 40 0.96
DAC38740050 38 74 50 50 0.85 DAC48890044 48 89 44 44 1.07
DAC38740450 38 74.04 50 50 0.85 DAC48890044/42 48 89 44 42 1.07
DAC38760043/40 38 76 43 40   DAC48900042 48 90 42 42 1.09
DAC38760043 68 76 43 43   DAC49840042/40 49 84 42 40 0.99
DAC38800236/33 38 80.02 36 33   DAC49840043 49 84 43 43  
DAC39/41750037 39/41 75 37 37 0.62 DAC49840048 49 84 48 48 1.06
DAC39680037 39 68 37 37 0.48 DAC49840050 49 84 50 50 1.08
DAC39680637 39 68.06 37 37 0.48 DAC49880046 49 88 46 46 1.05
DAC39680737 39 68.07 37 37 0.48 DAC49900045 49 90 45 45 1.08
DAC39720037 39 72 37 37 0.6 DAC50900040 50 90 40 40  
DAC39720037 39 72 37 37 0.6 DAC51890044/42 51 89 44 42  
DAC39720637 39 72.06 37 37 0.6 DAC51910044 51 91 44 44  
DAC39720040 39 72 40 40 0.61 DAC51960050 51 96 50 50  
DAC39740036 39 74 36 36 0.54 DAC52910040 52 91 40 40  
DAC39740036/34 39 74 36 34 0.52 DAC54900050 54 90 50 50  
DAC39740039 39 74 39 39 0.66 DAC54920050 54 92 50 50  
DAC39.1740036/34 39.1 74 36 34 0.66 DAC54960051 54 96 51 51  
DAC40700043 40 70 43 43 0.63 DAC55900060 55 90 60 60  
Type: Wheel Hub Bearing
Material: Chrome Steel
Certification: ISO9001, ISO9006
ABS: With ABS
Car Make: Toyota
Quality Level: P0 P6 P5 P4 P2

###

Samples:
US$ 3/Set
1 Set(Min.Order)

|
Request Sample

###

Customization:

###

Product Name
Wheel hub bearing 

###

Model Boundary Dimensions (mm)  Mass  Model Boundary Dimensions (mm)  Mass 
d D B C kg d D B C kg
DAC20420030/29 20 42 30 29 0.23 DAC40720037 40 72 37 37 0.55
DAC255200206 25 52 20.6 20.6 0.19 DAC40720637 40 72.06 37 37 0.55
DAC25520037 25 52 37 37 0.31 DAC40730034 40 73 34 34 0.56
DAC25520040 25 52 40 40 0.35 DAC40740036 40 74 36 36 0.62
DAC25520042 25 52 42 42 0.36 DAC40740036/34 40 74 36 34 0.58
DAC25520043 25 52 43 43 0.36 DAC40740040 40 74 40 40 0.67
DAC25550043 25 55 43 43 0.44 DAC40740042 40 74 42 42 0.7
DAC25550045 25 55 45 45 0.46 DAC40750037 40 75 37 37 0.62
DAC25550048 25 55 48 48 0.48 DAC39(41)750037 39(41) 75 37 37 0.62
DAC25560032 25 56 32 32 0.34 DAC40750039 40 75 39 39 0.64
DAC25600045 25 60 45 45 0.48 DAC40750050 40 75 50 50 0.68
DAC25620048 25 62 48 48 0.5 DAC40760033/28 40 76 33 28 0.54
DAC27520042 27 52 42 42 0.33 DAC40760033 40 76 33 33 0.52
DAC27520043 27 52 43 43 0.33 DAC40760036 40 76 36 36 0.58
DAC27520045/43 27 52 45 43 0.34 DAC40760038 40 76 38 38 0.6
DAC27530043 27 53 43 43 0.34 DAC40760040/38 40 76 40 38 0.52
DAC27600050 27 60 50 50 0.56 DAC40760041/38 40 76 41 38 0.52
DAC28580042 28 58 42 42 0.47 DAC40760441/38 40 76.04 41 38 0.7
DAC28580044 28 58 44 44 0.48 DAC40800030.2 40 80 30.2 30.2 0.65
DAC28610042 28 61 42 42 0.56 DAC40800030.2 40 80 30.2 30.2 0.65
DAC29530037 29 53 37 37 0.35 DAC40800031 40 80 31 31 0.65
DAC30550026 30 55 26 26 0.26 DAC40800036/34 40 80 36 34 0.74
DAC30550032 30 55 32 32 0.28 DAC40800038 40 80 38 38 0.8
DAC30580042 30 58 42 42 0.4 DAC40800038.1 40 80 38.1 38.1 0.8
DAC30600037 30 60 37 37 0.42 DAC40800040 40 80 40 40 0.86
DAC30600337 30 60.03 37 37 0.42 DAC40800045/44 40 80 45 44 0.95
DAC30620038 30 62 38 38 0.52 DAC40820040 40 82 40 40 0.88
DAC30620048 30 62 48 48 0.56 DAC408402538 40 84.02 53.8 53.8 0.97
DAC30630042 30 63 42 42 0.57 DAC401080032/17 40 108 32 17 1.04
DAC30640042 30 64 42 42 0.49 DAC41680040/35 41 68 40 35 1.06
DAC30680045 30 68 45 45 0.58 DAC42720038 42 72 38 38 0.54
DAC32580065/57 32 58 65 57   DAC42720038/35 42 72 38 35 0.52
DAC32670040 32 67 40 40 0.61 DAC42750037 42 75 37 37 0.6
DAC32700038 32 70 38 38 0.62 DAC42760033 42 76 33 33 0.65
DAC32720038 32 72 38 38 0.64 DAC42760038/35 42 76 38 35 0.65
DAC32720345 32 72.03 45 45 0.6 DAC42760039 42 76 39 39 0.62
DAC34620037 34 62 37 37 0.41 DAC42760040 42 76 40 40 0.68
DAC34640034 34 64 34 34 0.43 DAC42760040/37 42 76 40 37 0.66
DAC34640037 34 64 37 37 0.47 DAC42770039 42 77 39 39  
DAC34660037 34 66 37 37 0.5 DAC42780036/34 42 78 36 34  
DAC34670037 34 67 37 37 0.5 DAC42780040 42 78 40 40  
DAC35618031 35 61.8 31 31 0.42 DAC42780041/38 42 78 41 38 0.75
DAC35618040 35 61.8 40 40 0.43 DAC42780045 42 78 45 45  
DAC35620031 35 62 31 31 0.35 DAC42800036 42 80 36 36 0.83
DAC35620040 35 62 40 40 0.43 DAC42800036/34 42 80 36 34 0.81
DAC35640037 35 64 37 37 0.46 DAC42800037 42 80 37 37 0.68
DAC35650035 35 65 35 35 0.4 DAC42800038 42 80 38 38  
DAC35650037 35 65 37 37 0.51 DAC42800042 42 80 42 42 0.82
DAC35650045 35 65 45 45 0.6 DAC42800045 42 80 45 45 0.86
DAC35660032 35 66 32 32 0.42 DAC42800342 42 80 42 42 0.82
DAC35660033 35 66 33 33 0.43 DAC42820036 42 80 36 36 0.77
DAC35660037 35 66 37 37 0.48 DAC42820036 42 80 36 36 0.8
DAC35670042 35 67 42 42 0.6 DAC42820037 42 82 37 37 0.79
DAC35680233/30 35 68.02 33 30 0.47 DAC42840034 42 84 34 34 0.75
DAC35680037 35 68 37 37 0.52 DAC42840036 42 84 36 36 0.84
DAC35680042 35 68 42 42 0.62 DAC42840039 42 84 39 39 0.93
DAC35680039/36 35 68 39 36 0.56 DAC42840236 42 84.02 36 36 0.84
DAC35720027 35 72 27 27 0.48 DAC43/45820037 43/45 82 37 37 0.76
DAC35720028 35 72 28 28 0.49 DAC43760043/40 43 76 43 40 0.72
DAC35720228 35 72.02 28 28 0.49 DAC43760043 43 76 43 43 0.73
DAC35720233/31 35 72.02 33 31 0.54 DAC43770042/38 43 77 42 38  
DAC35720033 35 72 33 33 0.58 DAC437745.5/41.5 43 77 45.5 41.5  
DAC35720433 35 72.04 33 33 0.58 DAC43780044 43 78 44 44  
DAC35720434 35 72.04 34 34 0.58 DAC43780045/44 43 78 45 44  
DAC35720034 35 72 34 34 0.58 DAC43790041/38 43 79 41 38 0.77
DAC35720037 35 72 37 37 0.58 DAC43790045 43 78 45 45 0.84
DAC35720042 35 72 42 42 0.62 DAC43800038 43 80 38 38 0.75
DAC35720054 35 72 54 54 0.95 DAC43800040 43 80 40 40  
DAC35720042 35 77 42 42 0.7 DAC43800045 43 80 45 45 0.91
DAC35720042 35 77 42 42 0.7 DAC43800050/45 43 80 50 45 0.91
DAC35800047 35 80 47 47 0.7 DAC43820045 43 82 45 45 0.96
DAC36680033 36 68 33 33 0.47 DAC43(45)820037 43(45) 82 37 37 0.76
DAC367629.2/27 36 76 29.2 27 0.55 DAC4482.50037 44 82.5 37 37 0.73
DAC36760029/27 36 76 29 27 0.55 DAC44840042/40 44 84 42 40 0.92
DAC37680034 37 68 34 34 0.52 DAC45770050/45 45 77 50 45  
DAC37720033 37 72 33 33 0.58 DAC45800045 45 80 45 45 0.78
DAC37720037 37 72 37 37 0.59 DAC45830039 45 83 39 39 0.83
DAC37720237 37 72.02 37 37 0.59 DAC45840039 45 84 39 39 0.85
DAC37720437 37 72.04 37 37 0.59 DAC45840041/39 45 84 41 39 0.8
DAC37740037 37 74 37 37 0.61 DAC45840042/40 45 84 42 40 0.94
DAC37740045 37 74 45 45 0.79 DAC45840043 45 84 43 43 0.96
DAC38640032/29 38 64 32 39   DAC45840045 45 84 45 45 1
DAC38640036/33 38 64 36 33   DAC45840053 45 84 53 53  
DAC38640036/33 38 64 36 33   DAC45850023 45 85 23 23 0.54
DAC38650052/48 38 65 52 48   DAC458500302 45 85 30.2 30.2 0.63
DAC38700037 38 70 37 37 0.56 DAC45850045 45 85 45 45 0.96
DAC38700038 38 70 38 38 0.57 DAC45850047 45 85 47 47 0.98
DAC38710033/30 38 71 33 30 0.5 DAC45850051 45 85 51 51 1.02
DAC38710039 38 71 39 39 0.58 DAC45870041/39 45 87 41 39 0.92
DAC38710233/30 38 71.02 33 30 0.5 DAC45880039 45 88 39 39 0.9
DAC38720036/33 38 72 36 33 0.56 DAC45900054/51 45 90 54 51  
DAC38720236/33 38 72.02 36 33 0.56 DAC46780049 46 78 49 49  
DAC38720034 38 72 34 34 0.55 DAC46800043/40 46 80 43 40  
DAC38720040 38 72 40 40 0.63 DAC47810053 47 81 53 53 1.02
DAC38730040 38 73 40 40 0.67 DAC47850045 47 85 45 45 0.85
DAC38740036 38 74 36 36 0.62 DAC47880055 47 88 55 55  
DAC38740036/33 38 74 36 33 0.61 DAC47880055 47 88 55 55  
DAC38740236/33 38 74.02 36 33 0.59 DAC47880057.4 47 88 57.4 57.4  
DAC38740040 38 74 40 40 0.67 DAC48860042/40 48 86 42 40 0.96
DAC38740050 38 74 50 50 0.85 DAC48890044 48 89 44 44 1.07
DAC38740450 38 74.04 50 50 0.85 DAC48890044/42 48 89 44 42 1.07
DAC38760043/40 38 76 43 40   DAC48900042 48 90 42 42 1.09
DAC38760043 68 76 43 43   DAC49840042/40 49 84 42 40 0.99
DAC38800236/33 38 80.02 36 33   DAC49840043 49 84 43 43  
DAC39/41750037 39/41 75 37 37 0.62 DAC49840048 49 84 48 48 1.06
DAC39680037 39 68 37 37 0.48 DAC49840050 49 84 50 50 1.08
DAC39680637 39 68.06 37 37 0.48 DAC49880046 49 88 46 46 1.05
DAC39680737 39 68.07 37 37 0.48 DAC49900045 49 90 45 45 1.08
DAC39720037 39 72 37 37 0.6 DAC50900040 50 90 40 40  
DAC39720037 39 72 37 37 0.6 DAC51890044/42 51 89 44 42  
DAC39720637 39 72.06 37 37 0.6 DAC51910044 51 91 44 44  
DAC39720040 39 72 40 40 0.61 DAC51960050 51 96 50 50  
DAC39740036 39 74 36 36 0.54 DAC52910040 52 91 40 40  
DAC39740036/34 39 74 36 34 0.52 DAC54900050 54 90 50 50  
DAC39740039 39 74 39 39 0.66 DAC54920050 54 92 50 50  
DAC39.1740036/34 39.1 74 36 34 0.66 DAC54960051 54 96 51 51  
DAC40700043 40 70 43 43 0.63 DAC55900060 55 90 60 60  

Types of Axles

An axle is the central shaft of a rotating wheel or gear. It can be fixed to the wheels or to the vehicle itself. Depending on the design, it may be fixed in different positions and have different types of mounting points. It may also have bearings. Axles come in different types and shapes. Some of them are more functional than others, and they may be semi-floating, tandem-drive, or lift axles.

Customized axles work best for cars

Adding big horsepower to a car can increase its performance, but this addition can also cause problems. It is important to take proper measurements for the rear axle to ensure it is not too long or too short. However, this measurement can become complicated with limited-slip differentials and offset pinions.
If you want to add custom axles to your car, it is important to know the physical properties of the axle and what kind of load it can handle. If you’re only planning to make a minor upgrade, it may be enough to get a standard axle. However, if you’re planning to make any major modifications, a customized axle will be a much better option.
Customized axles can be made of a variety of materials. They can be made of carbon steel or nickel steel. Some are made to float freely and others are made to be rigid. If you’re building a car, you should also consider the type of bearings and kingpins that it will use.
Axles come in a variety of types, based on the amount of force they produce. Some are pre-defined, while others are customized to meet your car’s specifications. The advantages of customizing your axles include improved wheel speed and torque. You can even adjust the angle of the axles for even more performance.
Axles can make or break your car’s performance. Customized axles are made with a proprietary alloy material that increases the torsional strength. Because of this, they are able to withstand a tremendous amount of power. Additionally, they are able to withstand lateral and bending loads.
While customizing your axle is an excellent idea, it is also very expensive. The best way to go about it is to work with a professional. They are able to make the axles you need and they’re usually well-made and made of quality materials. However, you should make sure you check the reviews and ratings of the manufacturer before making a purchase.
If you want to shorten the axle on your car, you should have it machined with new splines. The number of splines on an axle is important because it determines the strength of the axle. A 33-spline axle is more durable than a 28-spline axle, and a 40-spline axle is even stronger.
Axles

Semi-floating axles

Semi-floating rear axles are a common type of axle used in midsize trucks. They utilize a single wheel support bearing and use one axle shaft to transmit rotation to the wheels. A semi-floating axle is typically lubricated. Aftermarket kits are available to make the axle shaft stronger. However, these kits do not upgrade the axle differential assembly. Therefore, axles with weak differential assemblies may not benefit from conversion.
Semi-floating axles feature a “C-Clip” for holding the axle shaft in place in the axle casing. The problem with this design is that the axle shaft is exposed to more wear and tear. In addition, axle shafts with a C-Clip must be surface-hardened in the area where the axle shaft is flexed.
Semi-floating axles differ from full-floating axles in their appearance. A semi-floating axle has a hub that looks like the hub of a 3/4-ton 14-bolt Ford axle, whereas a full-floating axle’s hub looks like that of a 1 ton Ford axle.
Semi-floating axles have a tapered end. This makes them more efficient in carrying weight. In addition, they have a keyed end to prevent the rear hub from slipping around. This ensures the axle remains stable even when the rear wheels are turning. It is also important to note that semi-floating axles can only carry a small amount of weight, while full-floating axles can carry a lot of weight.
Semi-floating axles are lighter than full-float axles, which makes them less expensive to manufacture. Additionally, if one axle fails, the vehicle will continue to operate normally. Aside from this, semi-floating axles also have c-clips, which are the bearings that bear the weight of the vehicle.
A semi-floating axle is also available with an optional 5-lug hub. The axle shaft transmits rotational torque from the differential to the wheel, and the hub rides on tapered roller bearings. A full-floating axle assembly is stronger than a semi-floating axle system. In addition, it is compatible with factory 5-lug hubs.
Semi-floating axles are easier to install than full-floating axles. However, if you want to convert your semi-floating axle to a full-floating axle, you can install an aftermarket kit.
Axles

Tandem-drive axles

A tandem drive axle is a type of axle with two wheels on one side of the vehicle. Compared to a single axle with two wheels, a tandem drive axle is 60 pounds lighter and offers improved performance and durability. This type of axle is designed to optimize fleet uptime by balancing design efficiency and application-specific demands.
The suspension system of a tandem drive axle includes air springs that control the suspension of the lead and trailing axles. The air springs are pneumatically connected to a common reservoir. The springs’ displacements are averaged to provide a controlling input to the air spring pressurization controller.
A tandem drive axle may be used to transport heavier loads. It is important to note that the maximum weight of a tandem drive axle may be different in different states. In general, the federal regulations allow up to 34K pounds per axle, but the state regulations may be different. However, the weight limits of tandem axle groups are significantly lower than for single axles.
A tandem drive axle is a common type of vehicle drive axle. It is characterized by two axles spaced more than 40 inches apart. The distances are measured from the axle centers. A tandem-drive axle may be a drive axle or a steer axle. If the steer axle is overloaded, steering will be more difficult.
A tandem drive axle is a popular choice for commercial trucks. It is durable and can handle heavy loads. It is often used in cement mixing trucks and tanker trucks, where the weight of the load is distributed evenly between the two axles. The combination of the two axles helps a tandem drive truck make a smoother start from a stopped position. Because the weight is distributed across two axles, the torque generated by the engine can be distributed more effectively.
A tandem drive axle is usually paired with two air-lift axles. A tandem drive axle is also used when the weight of a cargo truck cannot be supported by the two air-lift axles. Tandem-drive axles are typically installed at the rear of a truck’s chassis.
Axles

Lift axles

Lift axles are a great way to reduce the workload on your powertrain, while also improving your fuel economy. These axles reduce rolling resistance, thrust, and tandem scrub, and can improve fuel economy by two to five percent. However, you should use lift axles with care, and pay special attention to suspension spacing.
Some lift axles have a steering feature, which allows the driver to control when the axle is raised, which is useful for taking sharp corners. However, some drawbacks to non-steerable lift axles include excessive tire wear. Steerable lift axles can alleviate this problem, but they are generally more expensive.
Another benefit of lift axles is that they increase a vehicle’s weight carrying capacity. This is useful for trucks with large load capacities. Although state laws vary, federal regulations are generally in favor of spreading the weight of a truck’s cargo across several axles. This helps protect large road pavements and bridges.
Lift axles are an important feature of dump trucks and should be considered if you’re considering making a change. However, they can be costly, and it’s important to consider the costs and benefits before deciding on a new configuration. These axles are best used when the load capacity of a truck is more than double what it is capable of carrying.
The developed algorithm has been tested under various scenarios. First, the algorithm accepts the command from the driver to lift axles. However, it ignores the tag axle dropping command if the vehicle is traveling more than 30 kph. Second, the vehicle stops for about 60 seconds. Once loaded, the algorithm drops the axles in order.
Besides enhancing the weight carrying capacity of a truck, lift axles are also used for auxiliary purposes. Most of these axles are used on dump trucks. In addition to the pusher axle, some dump trucks have a tag axle, which increases the distance between the steer axle and rearmost axle. This allows the truck to carry more cargo than the pusher axle.
China Front Rear Axle Without ABS 43bwd06 43bwd03 45bwd06 45bwc03 45bwd07b NSK NTN Koyo NACHI IKO Wheel Hub Bearing     axle and wheelsChina Front Rear Axle Without ABS 43bwd06 43bwd03 45bwd06 45bwc03 45bwd07b NSK NTN Koyo NACHI IKO Wheel Hub Bearing     axle and wheels
editor by czh 2022-12-01

China factory Dac35720033-2RS Dac35720034-2RS Dac36680033-2RS Nissan Tiida Wheel Bearing Hub near me shop

Product Description

DAC35720033-2RS DAC35720034-2RS DAC36680033-2RS nissan tiida wheel bearing hub

 

 

The Aboved are just part of the products, For a lot more Bearing numbers, please make contact with us.

 

 

one. How a lot of the MOQ of your business?
    Our firm MOQ is 1pc.

two. Could you acknowledge OEM and personalize?

    Sure, We can customise for you according to your sample or drawings.

3. Could you provide samples for free of charge?

    Yes, We can provide samples for free of charge, although you have o pay for the freight expense.

four. What is your terms of supply?

     We can accept EXW, FOB, CFR, CIF, and so on. You can decide on the 1 which is the most practical cost powerful for you.

5. Is it your business manufacturing facility or Trade company?

    We are manufacturing facility, our sort is Manufacturing unit+Trade.

6. What is the warranty for your bearing?
    2years, Buyer need to have supply pictures and send bearings back again.

7. Could you inform me the packing of your products?

   Single Plastic Bag+Inner Box+Carton+Pallet, or in accordance to your ask for.

eight. Could you offer doorway to door services?

   YES, by air or by express (DHL, FEDEX, TNT, EMS, SF7-10 times to your town)

nine. Could you notify me the payment time period of your organization can settle for?

   T/T, Western Union, Paypal, L/C, and many others.

ten. What about the guide time for mass manufacturing?

      Honestly, it is dependent on the buy quantity and the season you place the get, our production ability is 8*20ft containers
every single thirty day period. Typically speaking, we propose you commence inquiry 3 to 4 months just before the day you would like to get the
goods at your Country.

 

Generate shaft kind

The driveshaft transfers torque from the motor to the wheels and is responsible for the clean managing of the motor vehicle. Its design experienced to compensate for variations in duration and angle. It need to also make certain perfect synchronization amongst its joints. The generate shaft need to be produced of large-grade materials to attain the very best balance of stiffness and elasticity. There are three major sorts of travel shafts. These incorporate: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic resources as the primary structural part. The yoke involves a uniform, considerably uniform wall thickness, a initial finish and an axially extending next end. The 1st diameter of the generate shaft is better than the next diameter, and the yoke more consists of a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the automobile.
By retrofitting the driveshaft tube conclude into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capacity of the tube yoke. The yoke is normally produced of aluminum alloy or steel materials. It is also employed to join the generate shaft to the yoke. Various styles are feasible.
The QU40866 tube yoke is used with an external snap ring sort universal joint. It has a cup diameter of 1-3/16″ and an general width of 4½”. U-bolt kits are one more option. It has threaded legs and locks to assist secure the yoke to the generate shaft. Some efficiency cars and off-road vehicles use U-bolts. Yokes must be machined to take U-bolts, and U-bolt kits are frequently the chosen accessory.
The end yoke is the mechanical part that connects the push shaft to the stub shaft. These yokes are normally made for certain drivetrain components and can be tailored to your wants. Pat’s drivetrain provides OEM substitution and personalized flanged yokes.
If your tractor employs PTO components, the cross and bearing package is the best device to make the link. In addition, cross and bearing kits assist you match the correct yoke to the shaft. When picking a yoke, be sure to measure the outside diameter of the U-joint cap and the within diameter of the yoke ears. Right after having the measurements, check with the cross and bearing identification drawings to make positive they match.
While tube yokes are usually effortless to replace, the best benefits arrive from a certified device store. Devoted driveshaft specialists can assemble and stability finished driveshafts. If you are unsure of a specific factor, remember to refer to the TM3000 Driveshaft and Cardan Joint Support Guide for much more info. You can also check with an excerpt from the TSB3510 guide for info on angle, vibration and runout.
The sliding fork is another important portion of the generate shaft. It can bend over rough terrain, allowing the U-joint to preserve spinning in more durable conditions. If the slip yoke fails, you will not be able to push and will clang. You want to exchange it as soon as possible to steer clear of any hazardous driving problems. So if you recognize any dings, be sure to check out the yoke.
If you detect any vibrations, the drivetrain may require adjustment. It is a straightforward approach. Very first, rotate the driveshaft right up until you uncover the appropriate alignment in between the tube yoke and the sliding yoke of the rear differential. If there is no obvious vibration, you can hold out for a even though to solve the problem. Keep in mind that it may possibly be practical to postpone repairs briefly, but it could lead to even bigger difficulties afterwards.
air-compressor

conclude yoke

If your driveshaft requires a new stop yoke, CZPT has a number of drivetrain options. Our automotive finish yoke inventory contains keyed and non-keyed alternatives. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are usually used to join two heads back to back. These are handy alternatives to assist hold drivetrain components in place when driving over tough terrain, and are generally compatible with a variety of designs. U-bolts demand a specifically machined yoke to acknowledge them, so be confident to purchase the appropriate measurement.
The sliding fork helps transfer electricity from the transfer case to the driveshaft. They slide in and out of the transfer case, permitting the u-joint to rotate. Sliding yokes or “slips” can be bought independently. No matter whether you require a new a single or just a handful of components to up grade your driveshaft, 4 CZPT Parts will have the components you require to repair your automobile.
The finish yoke is a required portion of the push shaft. It connects the drive prepare and the mating flange. They are also used in auxiliary electrical power gear. CZPT’s drivetrains are stocked with a selection of flanged yokes for OEM programs and custom builds. You can also discover flanged yokes for continual velocity joints in our comprehensive stock. If you will not want to modify your current drivetrain, we can even make a customized yoke for you.

China factory Dac35720033-2RS Dac35720034-2RS Dac36680033-2RS Nissan Tiida Wheel Bearing Hub     near me shop China factory Dac35720033-2RS Dac35720034-2RS Dac36680033-2RS Nissan Tiida Wheel Bearing Hub     near me shop