Tag Archives: motor planetary gearbox

China high quality 25: 1 Ratio RV 030 50 Vertical Shaft Motor Worm Gearbox planetary gearbox

Product Description

25:1 Ratio RV 030 50 Vertical Shaft Motor Worm GearBox

Product Description

NMRV 571-150 worm gear box with flange and electric motor
NMRV+NMRV Double Stage Arrangement Reduction Gear Box
RV Series Worm Gearbox
worm speed reducer
nmrv worm gear motor

Detailed Photos

RV Series
Including RV / NMRV / NRV.
Main Characteristic of RV Series Worm Gearbox
RV series worm gear reducer is a new-generation product developed by CHINAMFG on the basis of perfecting WJ series products with a compromise of advanced technology both at home and abroad.
1. High-quality aluminum alloy, light in weight and non-rusting.
2. Large in output torque.
3. Smooth running and low noise,durable in dreadful conditions.
4. High radiation efficiency.
5. Good-looking appearance, durable in service life and small volume.
6. Suitable for omnibearing installation.
Main Materials of RV Series Worm Gearbox
1. Housing: die-cast aluminum alloy(frame size: 571 to 090), cast iron(frame size: 110 to 150).
2. Worm: 20Crm, carbonization quencher heat treatment makes the surface hardness of worm gears up to 56-62 HRX, retain carbonization layer’s thickness between 0.3 and 0.5mm after precise grinding.
3. Worm Wheel: wearable stannum bronze alloy.

SPEED RATIO 7.5~100
OUTPUT TORQUE <1050NM
IN POWER 0.09-11KW
MOUNTING TYPE FOOT-MOUNTED FLANGE-MOUNTED

Product Parameters

When working, great load capacity, stable running, low noise with  high efficiency.
  Gear Box’s Usage Field
1 Metallurgy       11 Agitator  
2 Mine       12 Rotary weeder  
3 Machine       13 Metallurgy   
4 Energy       14 Compressor
5 Transmission     15 Petroleum industry
6 Water Conserbancy     16 Air Compressor
7 Tomacco       17 Crusher  
8 Medical       18 Materials
9 Packing     19 Electronics  
10 Chemical industry     20 Textile indutry
           
Power 0.06kw 0.09kw 0.12kw 0.18kw 0.25kw 0.37kw 0.55kw
0.75kw 1.1kw 1.5kw 2.2kw 3kw 4kw 5.5kw
7.5kw 11kw 15kw        
Torque 2.6N.m-3000N.m
Ratio 7.5-100, the double gearbox is  more
Color Blue, Silver or as customers’ need
Material Iron or Aluminium
Packing Carton with Plywood  Case or as clients’ requirement
Type RV571 RV030 RV040 RV050 RV063 RV075 RV090
Weight 0.7kg 1.3kg 2.3kg 3.5kg 6.2kg 9kg 13kg
Type RV110 RV130 RV150        
Weight 35kg 60kg 84kg        

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

Application: Motor, Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Worm
Gear Shape: Worm
Step: Single-Step
Customization:
Available

|

Customized Request

worm gearbox

Self-Locking Properties in a Worm Gearbox

Yes, worm gearboxes exhibit self-locking properties, which can be advantageous in certain applications. Self-locking refers to the ability of a mechanism to prevent the transmission of motion from the output shaft back to the input shaft when the system is at rest. Worm gearboxes inherently possess self-locking properties due to the unique design of the worm gear and worm wheel.

The self-locking behavior arises from the angle of the helix on the worm shaft. In a properly designed worm gearbox, the helix angle of the worm is such that it creates a mechanical advantage that resists reverse motion. When the gearbox is not actively driven, the friction between the worm threads and the worm wheel teeth creates a locking effect.

This self-locking feature makes worm gearboxes particularly useful in applications where holding a load in position without external power is necessary. For instance, they are commonly used in situations where there’s a need to prevent a mechanism from backdriving, such as in conveyor systems, hoists, and jacks.

However, it’s important to note that while self-locking properties can be beneficial, they also introduce some challenges. The high friction between the worm gear and worm wheel during self-locking can lead to higher wear and heat generation. Additionally, the self-locking effect can reduce the efficiency of the gearbox when it’s actively transmitting motion.

When considering the use of a worm gearbox for a specific application, it’s crucial to carefully analyze the balance between self-locking capabilities and other performance factors to ensure optimal operation.

worm gearbox

How to Calculate the Input and Output Speeds of a Worm Gearbox?

Calculating the input and output speeds of a worm gearbox involves understanding the gear ratio and the principles of gear reduction. Here’s how you can calculate these speeds:

  • Input Speed: The input speed (N1) is the speed of the driving gear, which is the worm gear in this case. It is usually provided by the manufacturer or can be measured directly.
  • Output Speed: The output speed (N2) is the speed of the driven gear, which is the worm wheel. To calculate the output speed, use the formula:

    N2 = N1 / (Z1 * i)

Where:
N2 = Output speed (rpm)
N1 = Input speed (rpm)
Z1 = Number of teeth on the worm gear
i = Gear ratio (ratio of the number of teeth on the worm gear to the number of threads on the worm)

It’s important to note that worm gearboxes are designed for gear reduction, which means that the output speed is lower than the input speed. Additionally, the efficiency of the gearbox, friction, and other factors can affect the actual output speed. Calculating the input and output speeds is crucial for understanding the performance and capabilities of the worm gearbox in a specific application.

worm gearbox

Lubrication Requirements for a Worm Gearbox

Lubrication is crucial for maintaining the performance and longevity of a worm gearbox. Here are the key considerations for lubricating a worm gearbox:

  • Type of Lubricant: Use a high-quality, high-viscosity lubricant specifically designed for worm gearboxes. Worm gearboxes require lubricants with additives that provide proper lubrication and prevent wear.
  • Lubrication Interval: Follow the manufacturer’s recommendations for lubrication intervals. Regularly check the gearbox’s temperature and oil condition to determine the optimal frequency of lubrication.
  • Oil Level: Maintain the proper oil level to ensure effective lubrication. Too little oil can lead to insufficient lubrication, while too much oil can cause overheating and foaming.
  • Lubrication Points: Identify all the lubrication points on the gearbox, including the worm and wheel gear surfaces. Apply the lubricant evenly to ensure complete coverage.
  • Temperature: Consider the operating temperature of the gearbox. Some lubricants have temperature limits, and extreme temperatures can affect lubricant viscosity and performance.
  • Cleanliness: Keep the gearbox and the surrounding area clean to prevent contaminants from entering the lubricant. Use proper filtration and seals to maintain a clean environment.
  • Monitoring: Regularly monitor the gearbox’s temperature, noise level, and vibration to detect any signs of inadequate lubrication or other issues.

Proper lubrication will reduce friction, wear, and heat generation, ensuring smooth and efficient operation of the worm gearbox. Always refer to the manufacturer’s guidelines for lubrication specifications and intervals.

China high quality 25: 1 Ratio RV 030 50 Vertical Shaft Motor Worm Gearbox   planetary gearbox	China high quality 25: 1 Ratio RV 030 50 Vertical Shaft Motor Worm Gearbox   planetary gearbox
editor by CX 2023-09-13